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Abstract

Mathematical models are applied in war theories as these of Richar-
son and Lanchester. In this paper discriminant analysis is used for the
most famous battles of the Second World War. The linear function of
Fisher classifies the opposite sides in two groups (the one of the winners
and the one of the losers). That function can be used in order to predict
the winner of a battle and to evaluate the difficulty of a win.
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1 Introduction

Historically, the first mathematical expressions about the connections be-
tween force sizes and loss were developed from J.V. Chase in [3]. Later F.W.
Lanchester [5] showed the importance of concentration of troops in modern
combat. Lanchester constructed mathematical formulas called ”Lanchester
laws”, which were given by a set of ordinary differential equations. These
equations can be treated as models of attrition in modern warfare. For ex-
ample, Lanchester laws include the idea that, the attrition rate of one side is
proportional to the opposing side’s size in the case of directed fires [7]. Many
researchers tried to generalize Lanchester’s laws by using tools from the field of
Stochastic and Partial Differential Equations [1, 8, 9]. In [4] the author gives
an introduction in the theory of war’s stochastic processes.

The present paper deals with the construction of a linear function with
several variables which can predict the result of a battle under given circum-
stances. For this Discriminant Analysis has been used and especially the Dis-
criminant Rule of Fisher [2, 6].

1Corresponding author, e-mail : mchalikias@ucg.gr
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2 Data and Methods

The data sets concern the Second World War battles. The results of these
battles are known and the winner was either the allays’s or the axis’s forces.
For each battle we use the data, which are presented in the following tables:

Table 1. Loser group
Forces Battles Troops Tanks Losses
Axis’s Stalingrad 1011000 675 850000
Axis’s Kursk 800000 2700 50000

Allays’s Ardennes, Belgium 500000 500 84834
Axis’s Monte Cassino, Italy 80000 20000

Allays’s El Alamein, Egypt 96000 585 17000
Axis’s El Alamein, Egypt II** 116000 547 37956
Axis’s Normandy, France 380000 9000

Allays’s France, Low Countries 4050000 2445 158830

Table 2. Winners group
Forces Battles Troops Tanks Losses
Allays’s Stalingrad 1103000 1463 750000
Allays’s Kursk 1300000 3600 180000
Axis’s Ardennes, Belgium 830000 424 85913

Allays’s Monte Cassino, Italy 105000 54000
Axis’s El Alamein, Egypt 150000 1114 13250

Allays’s El Alamein, Egypt II** 220000 1029 13900
Allays’s Normandy, France 1000000 10264
Axis’s France, Low Countries 2862000 3384 2260000

Our purpose is to create a linear discriminant function (rule) which can
classify each of these sides (allays and axis) to the winners. Furthermore, this
function will give the possibility to predict the winner of a battle, if specific
data for the fighting sides such as the number of troops and tanks are known.
We construct the following variables in order to make the data of these battles
comparable and suitable for the discriminant analysis :

Troops =
number of soldiers from A army

number of soldiers from B army

Tanks =
number of tanks that A army had

number of tanks that B army had

Human Losses =
number of soldiers who died or were injured/captured

number of soldiers at the beginning of the battle
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A discriminant function presupposes the existence of two groups to be
separated, in our case we have the group of the winners and the one of losers.
Each group takes a score from the discriminant function, let’s say uij, i = 1, 2
and j = 1, 2, . . . , ni, where ni is the number of the observations for every
variable. The main goal is to find a function which maximizes the difference
of the mean u1 − u2. We can use as a measure of distance, the quantity

D =
|u1 − u2|

SU

where

SU =

∑n1

j=1
(u1j − u1)

2 +
∑n2

j=1
(u2j − u2)

2

n1 + n2 − 2
.

We want to maximize D or equivalently maximize D2. Discriminant Fisher
function is a linear function of the form

uij = Lxij,

where xij, (i = 1, 2, j = 1, 2, . . . , ni) is the vector with the values of the
variables which are used in the model, (in our case the variables are Troops,
Tanks, Human Losses) and L is the vector of the coefficients.

Let Lt denote the transpose of the vector L. Thus, combining the above
relationships we have to maximize the quantity

D2 =
(Lt(x1 − x2))

2

LtSpL
. (1)

We remind the known Cauchy-Schwartz inequality, where in Euclidean vector
space R

p using the standard inner product, for every vector a, b ∈ R
p holds

(

atb
)2

≤
(

ata
) (

btb
)

. (2)

If we suppose that the covariance matrix is positive definite, substituting in
(2) a = S

1/2

p L and b = S
−1/2

p (x1 − x2), we have

(

Lt(x1 − x2)
)2

≤
(

LtS1/2

p S1/2

p L
) (

(x1 − x2)
tS−1/2

p S−1/2

p (x1 − x2)
)

⇔
(

Lt(x1 − x2)
)2

≤
(

LtSpL
) (

(x1 − x2)
tS−1

p (x1 − x2)
)

.

Due to (1) the last inequality can be written

D2 ≤
(

(x1 − x2)
tS−1

p (x1 − x2)
)

.

If L = cS−1

p (x1 − x2), with c > 0, we have

D2 = (x1 − x2)
tS−1

p (x1 − x2),
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which is the maximum distance. In this case we get the best possible segrega-
tion. The discriminant function is complete, if we define as critical value the
following quantity:

m =
u1 − u2

2
=

Lt(x1 − x2)

2
Then the discriminant rule states:

”if Ltx ≥ m ⇔ Ltx − m ≥ 0, then classified in the first group”
In this paper the score of the discriminant function is calculated by the

usage of the program SPSS16.

3 Descriptive Statistics

First of all descriptive statistics of each group are available in the following
table, where denoted by 0 correspond to winner’s group and 1 correspond to
loser’s group.

Table 3. Group Statistics
Valid N (listwise)

grouping Mean Std. Deviation Unweighted Weighted

0 Troops 1,42362000 0,439099142 6 6,000
Tanks 1,58637200 0,484917668 6 6,000
Human Losses 0,31051794 0,331379538 6 6,000

1 Troops 0,78612541 0,335822711 6 6,000
Tanks 0,69497708 0,263974502 6 6,000
Human Losses 0,26940454 0,298008379 6 6,000

Total Troops 1,10487200 0,499738219 12 12,000
Tanks 1,14067500 0,596039531 12 12,000
Human Losses 0,28996124 0,301236527 12 12,000

It is remarkable that the means of Human Losses in each group are very
close.

For the selection of the most parsimonious model stepwise method has been
used. The final model includes only the variables Troops and Tanks. ANOVA
table indicates that the discrimination of the two variables from the Fisher’s
function is very satisfactory (statistically significant in the level of 1%).

Table 4. Wilks’λ for the two variables
Exact F

Step Variables λ df1 df2 df3 Statistic df1 df2 Sig.
1 Troops 0,390 1 1 10 15,640 1 10,000 0,003
2 Tanks 0,279 2 1 10 11,605 2 9,000 0,003

Moreover the values of Wilks’λ for the two variables give the percentage of
variance which can’t be explained with the model (the Fisher’s function). We
should consider as satisfactory values the values less than 0,5.
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The assumption for the equality of variances of the two variables can’t be
rejected as we observe in the following Box’s Matrix (see in Table 5).

Table 5. Box’s Matrix3

Box’s M 2,109
Approx. 0,551

df1 3
df2 18000,000
Sig. 0,648

Wilks’λ of the model is under 0, 5 and gives a satisfactory p-value (less than
0, 05).

Table 6. Wilks’λ for the model
Test of function(s) Wilks’λ Chi-square df Sig.

1 0,279 11,476 2 0,003

The discriminant Fisher’s function is given in Table 7. According to that
each of opposite sides (allays’s and axis’s forces) group is classified in group 0
(group of winners), if the function w1 = −17, 013+10, 31Troops+11, 31Tanks
is greater than the score of w2 = −4, 64 + 5, 59Troops + 5, 05Tanks. Equiva-
lently for positive values of the function w = −17, 013 − (−4, 464) + (10, 31 −
5, 59)Troops + (11, 31 − 5, 05)Tanks equals to w = 12, 549 + 4.72Troops +
6.26Tanks the group is classified in winners group else it is classified if losers
group.

Table 7. Fisher’s linear discriminant functions
grouping

0 1
Troops 10,314 5,590
Tanks 11,319 5,053

(constant) −17, 013 −4, 646

Next table summarizes the results of the Fisher’s function, where 91, 7% of
the grouped cases are correctly classified.

Table 8. Classification results4

Predicted Group
grouping 0 1 Total

Original Count 0 5 1 6
1 0 6 6

% 0 83,3 16,7 100,0
1 0 100,0 100,0

3Tests null hypothesis of equal population covariance matrices.
491, 7% of original grouped cases correctly classified.
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From the Casewise Statistic table (see Table 9), we have that misclassified
observations is the axis’s forces in France battle, which was classified in the
group of losers. Moreover, from that table we conclude the discriminant scores
of the function w.

Table 9. Casewise Statistics
Case number Actual Group Predicted Group Discriminant Scores
Original 1 1 1 −1, 755

2 1 1 −1, 624
3 1 1 −0, 727
5 1 1 −2, 064
6 1 1 −2, 232
8 1 1 −0, 394
9 0 0 2,172

10 0 0 1,250
11 0 0 0,269
13 0 0 2,369
14 0 0 2,858
16 0 15 −0, 112

Finally the results above are verified from the histograms for each group in
the following figure.

Figure 1: The left histogram corresponds to the winner’s group and the right
to the loser’s group.

5Misclassified case.
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4 Discussion

Fisher’s function classifies the data in a satisfactory level (91, 7%). That
fact gives the possibility to predict the winner of a battle. Finally we observe
that axis’s forces in France battle is the only misclassified observation. This
proves that the win in France form axis’s forces was earned in unfavorable
conditions relative to the opposite side.
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