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COMPRESSIONS AND DILATIONS OF NUMERICAL RANGES*
J. MAROULAST AND M. ADAM!

Abstract. Inner and outer approximation of numerical ranges of n X n complex matrices and
matrix polynomials is investigated in this paper, which is based on the numerical ranges of matrices
of smaller or double dimensions.
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1. Introduction. Let A, be the algebra of all n x n complex matrices. For a
matrix A € M, the numerical range N R[A], also known as the field of values, is the
set of complex mumbers

(1.1) NR[A] ={{4z,z): zeC", |z|l=1}.
The radius
r(A) = max {|z| . z&€ NR[A]}

of the smallest circle |z| = r(A) that encloses NR[A] is called the numerical radius.
The usefulness of the numerical range and numerical radii is well known. As an ex-
tensive background for this active research topic we refer to {HJ] and [AL]. Replacing
in (1.1) the Euclidean inner product with the indefinite scalar product on C", it is
known [GLR] that there exists an invertible indefinite hermitian matrix 5 such that
{z,9)g = (Sz,y). Hence, we obtain the S-numerical range of A:

2 W)= {E228; secn (33,55)8750} = Wi wsa
where
{1.3) ' WI ={{Az,z)s: z€C", (z,z)s =1}

In particular, the set W2 (A) is called the positive S-numerical range. The S-numerical
ranges generalize the classical numerical range, and some properties of the N R[A] can
be extended to Wg{A). In [B] it is proved that W {4) is a convex set and also that the
closure of set Ws({A) contains all eigenvalues of A if A is positive definite. Moreover,
we can readily verify the following:

(i) WI(A+kD) =WI(A)+k, keC.

(it} W”"(kA) EWS(A), keC.

{iii) W"*(A + B) C W+( )+ Wg(B).

(iv) Wd(41) € WF(A), A1, a submatrix of A.
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(v) z€ WI(A), S real symmetric = 7 € WZ(A).

A further study of both Wg(A) and W (A) has been presented by [LTU], where
it is shown that Wg(A) is always p-convex, i.e., for any distinet pair of points 23, 22 €
Wg{A) either the closed line segment Z1Z; C Ws(A) or the line {az; + (1 - a)z; :
e <0or 1<a} C Wg(A). Clearly, if S is positive definite, then

Ws(A) = Wi(4) = NR[SYV2AS42),

The idea of the numerical range has also been extended to matrix polynomials [LR],
[M]:

L) =DM+ AN 4+ Ay As € M,

where

(1.4) NR[LAY] ={A: (L(AN)z,z) =0 for some z & C"}.

NR[L())] has peculiar geometric properties with respect to the boundedness and con-
nectedness of this set, which are important to the factorization of matrix polynomials
(M}, [MP1, MP2, MP3l, [MMP], and [LMZ].

In this paper we continue our effort for further development of the subject and
the study of related problems. In section 2 we express NE[A| as the union of the
numerical ranges of matrices of dimensions k& x k for 2 < k < n. In this way, each
set in the union can be considered as an inner approzimation or dilation of NR[A].
This result generalizes the approach of Markus and Pesce [MP], where NE[A] is the
union of the numerical ranges of 2 x 2 matrices, i.e., of ellipsoid regions using only
real orthogonal vectors. Taking advantage of the fact that NR[A] and N R[e* 4] are
symmetric with respect to the straight line y = (tan &)z, we have set the convex hull
of NR[A]|J N R[e%® A] equal to the numerical range of a suitable matrix. This result
for 8 = 0 leads to the convenient equality

where M, N are real matrices defined by 4 = M +iN. Therefore, N R[A] is presented
as the intersection of numerical ranges as the line y = (tan#)z rotates around the
origin for 0 < & < 7. The last equality is generalized further for the matrix

M N

Conv.hull (NR[A] U NR[A]) = NR
owe (vl i) =vz (| Y

which, as is known, corresponds to a quartenionic matrix. Clearly, the outer set
Conv.hull{ NR{A] U NR[A]) can be considered as a compression of NR[A]. Some
additional comments on projections on the axes, on the joint numerical range [HIJ],
and on the numerical radius have been presented. The MATLAB procedure is exposed
and examples are given,

Tn the third section we refer to W (4). We show that for any indefinite hermitian

matrix 5,

NRIAI N WH(A) 0,
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and also that
Wit o5(A@& B) = Conv.ull(W¢ (4) U W (B)).

This equality clarifies Conv.hull(W3 (A)UW (e%# 4)) as the (I;® S)-numerical range
of a matrix depending on A.

Finally, in the fourth section, we present two properties of N R[L{A)]. In particular,
the first one refers to the reduction of this set to NR[M(A)], where the s x & (k > 2)
matrix pelynomial M(A) depends on L{A).

2. The numerical range of a matrix. An approximation or a déilation of
NR[A] in (1.1) is presented as a first statement.
THEOREM 2.1. For o prefiz number k < n,

: §TAG ... &AL
(2.1) NRJA]= | NR : ; :
e gAE ... AL
where &y, ... , & Tun over all sets by k orthonormal vectors of C™.
Proof. Any vector z € C™ belongs to a k-dimensional subspace E ¢ C™. Let
&1, ..., & be an orthonormal basis of E such that & € C™, Then
r=1[1 ... &jw,
where w € C*. Clearly, w is a unit vector if and only if = is a unit, and due to
3 AL ... AL
Az =w* | 1 J AL Glu=wt W,
3 ELAE L. AL
we verify the relationship (2.1}. O

For k = 2, the interior of NR[A] is covered by the ellipses

wa( )

where {&;, & is any pair of orthonormal vectors. The estimation of N R[4] clearly
is realized easily if k > 2, since the fields of values in the left part of (2.1) are convex
sets and even they occupy a more extensive area of NR[A] as k increases. This is
illustrated in example 1. In particular, for £ = 2 and for §1, £s real orthogonal vectors,
(2.1) has been presented in [MP] using a different approach.

A similar approximation for the g-numerical range of A:

1AL (1AL
5AL 5 AL

NRgAl ={y Az : [z =llyll=1, v"z=4q}, ¢<[0,1],

)

is given by the formula:

ETAE, E1AL
E3AL E5AL

NRJAl = | ) NR, (

£1.82
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since for z € A = span{, &}, there exists y € A such that y*z = q.

For the compression of N E|A] we state the following theorem.

THEOREM 2.2. For any matriz A,
A+e?h (A e*A)
i(A—e®A) A+eA ’

)

A O
O 201

(2.2) Conv.hull{ NR[A] U NR[e*?A]) = NR (é

where 0 < 8 < 7.
Proof. Since

A O

O 287
we have to show that
A4 28 (A — o8 T
(a7 ) (5 2]}

WA - e A) A+ e 4
In fact, for a unit vector z € C?® and for A = M +iN, where M, N € R,,x, we have

|40 _1*IO} I —iI M N J[TI il
Tlo emeg |7 3" O &I || I I||-N M [i I ¥

1., I —iI (14X —~i(l — )]
- ~iI I || i1—-e¥)]  (1+eH]

M N I il
X T
-N M 17

T . g
1 1 —3 Ate?® A “""(A_ez A)
= —z* I 2 2

WA-e™0A)  Ane®
2 2

Conv.hull(NR[A] U NR[e*® 4]) = NR (

| —

. 1 i 1 i .
2$ (Iﬁ*l 1}@1)({1, ) ®I)I—I$—1,

the relationship (2.2} is verified readily. a
COROLLARY 2.3. For any matriz A = M + N, where M, N € R, xn,

MN)

-N M

(2.3) Conv.hull (NRJA] U NRIA]) = NR q
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Proof. Equation (2.3) comes from (2.2) with § = 0. il
From Corollary 2.3, we have the following comments.
(I} For any matrix 4 = M + iN, the numerical range of a 2n X 2n matrix

[ __gf f,‘\;, } is symmetric to the real axis.
(I1)

T A (]

This is evident, due %o
M N _ o T M N o I
N M| |I o0 -N M!|I o}

(11T

M N
2.5 .. NR[A] = j .
( ) PI0]oz [ } pl‘OJomNR ( |: N M ‘| )

In fact, by the symmetry of N R[A] and N R[A] to the real axis, it is implied
that the field Conv.hull( N R[A]JUNR[A]) is also symmetric to the same axis.
Hence, by (2.3) we cobtain (2.5). '

(Iv)

(2.6) proi,, NR[A] = proj,, NR ({ _i{ % ]) :

By the equalities (2.4) and Im{z*Az) = Re{z*(—iAd)z), (2.6) is obvious.
{V) The real field of values [HJ, p. 85]

(2.7) JNR({% _?‘; }( _ﬁ, ?\fD = NRJA].

In fact, if we denote the unit vector 2 = « + fv, then by the relationship

*A | M -N vilwr N M

= w
hAe=wt | twEilen .
where w = | ¥ | € R, we confirm the truth of the contention.

THEOREM 2.4. For any matriz A € Cpxp,

A 2] _Z'(Aweih'&ﬁ} })

i
(2.8) NR[A]= [] NR (u- WA- PR A4 ™A

0<o<T 2

Proof. Let z € NR[A]. Then the complex number

14 iA_
z
1—4d "’

w =2z =



COMPRESSIONS AND DILATIONS OF NUMERICAL RANGES 235

where A = tanf, is symmetric in z with respect to the straight line y = Az. Since
w € NR[e*¥ 4], the fields NR[A] and NR[e*® 4] are symmetric with respect to the
line y = Az, and hence by (2.2),

(| NR (%
= (7] Conv.hul (NR[AJ UNR [1 “AAD =NR[4]. O

0<8<n
)
0<e<n b-iA

A+ed  _i(A—e¥])
i(A—e*PA)  A+e*0A

Setting e~* A = Sy +1Tp, where Sy, Ty are real matrices, by (2.8) we have directly
the following corollary.
Sp Th
=Ty Sp '

COROLLARY 2.5.

Hence, by the theory of the numerical range of matrices [HJ|, we can say that
Theorems 2.1 and 2.4 give a better approximation of NR[A] than the polygonal ap-
proximation. This happens because the boundary of the numerical ranges of matrices
in (2.1) and also of those in (2.8} contain parts of AN R[A] and not points, i.e., the
vertices of polygons. Hence, the verification of NR[A] by the intersection in (2.8},
due to the convexity of ¥V E[A], needs a small number for 8.

A further generalization of (2.3) is the investigation of a relationship between the
numerical ranges of matrices:

(2.9) NRA= () NR (e*""

9<e<x

M N U V
-N M =V U
A B
(2.10) ¢ = B i K= ' ,
-U v :+ M =N
| -V -U ¢ N M

where A =M +iN and B = U +V.

THEOREM 2.6. For the matrices C' ond K in (2.10) it is true that NR|C| =
NRIK].

Proof. Denote by R the unitary matrix

1 4 1 —3

R:l i 1 —1 1 ol
23 -1 1 i 1
-1 i -1 —3

Then
R*KR = diag(C, 0),
and thus we obtain

NR[K] = NR[diag(C, C)] = Conv.hull (NR[C] U NR[C}) .
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Moreover, by the equation

0O -I

c
I O

OI_G
-7 o | 7

we have NR[C] = NR[C| and consequently the equality of NR[C] and NR[K] is
evident. |
In the special case where

p+ig u+tiv
-1y p—ig

C= ’ prQ:urvERa

we can check that NR[C] is the interval [p —i1/¢% +u? + 02, p+i/g2 +u? +02]
For the numerical radius r(A), defined by r(4) = max {|2|: 2z € NR[A]}, we
verify the following theorem.

THEOREM 2.7.
1AL . AL

Proof. By the relationship (2.1), clearly the N R of the matrix on the right is a

subset of NE[A], which implies the inequality in {2.11). For the equality, note that

(2.11) r : : <r(d)=r (

GAG ... &AL

since r(e?? 4) = |29 r(4) = r(A). a

MATLAB procedure. The inner approximation of NR[A], as it is expressed
in Theorem 2.1, can be illustrated as follows:

Step 1. Introduce the matrix.

Step 2. For a prefix number & < n introduce & arbitrary [inearly independent
vectors of C™.

Step 3. Orthonormalize this set to &y,...,&.

Step 4. Calculate the matrix B = [£7Ag), 4,7=1,2,...,k

Step 5. Determine the numerical range of B.

Step 6. Illustrate NR[B].

Step 7. Repeat this procedure for some other set of vectors.

Ezample 1. Let

A O
0 i

A O

O 267 ) = max (T(A)1 T(E%BA)) = T(A}:

10 0
0 —1 0
A=11 o0 1 0
T 0 0 1

In Figure 2.1, the NR{A] are defined as the union of the numerical ranges of 2 x 2
and 3 x 3 matrices, an application of (2.1) for k =2 and k= 3.
As an implication of Theorem 2.4 we give the next exampie.
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1.5 T T T T 3 T T —

051

Q.5

-1.5
-2.5

.51

Ak

Ezample 2. Let

24 1
0 1—i |

Then for 0 =0, %, %, %, %’T we illustrate the N R of the matrix

A+e¥T  —i(A— M)

1
5 E(A . eziﬂA) A 4 62wﬁ

(see Figure 2.2).
From this, (2.8) is evident.

3. Numerical range on an indefinite inner product. Properties of the nu-
merical range of a matrix on an indefinite inner product space have been presented



238 J. MARGULAS AND M. ADAM

9=/

Fia. 2.2

in a recent publication [LTU]. The authors have extended some properties of the
classical numerical range and have given a detailed description of W1 (4) and

VF(A) = {{Az,z}: z€C", (z,z)s = 1}.

Obviously, by (1.3), Wi (A4) = V{(SA) and it is proved that W3 {4) and V(A) are
always convex in a different approach from that in [B]. We next state a connection of
NER[A] and W] (A4).
THEOREM 3.1. For any hermitian matriz S, the set NR[{A]NWZ (A) is nonempty.
Proof. For the hermitian S, let P be an orthonormal matrix such that S =
P*DP, where D is a real diagonal matrix. Then for any S-unit vector z € C* (lL.e.,
r*Sz =1), we have

{Ar,2)g = 2*SAxr = ¢"P*DPAx = y* DBy = (By,v)p.

wherey = Pz € C"and B = PAP*. Since y is a D-unit vector, W (A4) = W (B).
Moreover, for any unit vector w € C™, the equations

w"Aw = wP"BPw = * Bz, z=Pw |z =1

imply NR[4] = NR[B).

Therefore, it is enough to prove that NR{B] n W (B) # 0, where D is a real
diagonal matrix. Next we denote D = diag(Dy, —D)), where Dy > O and Dy > 0
are the subdiagonal matrices. Let E be a subspace of C® and £;, ... ,&; be a D-
orthonormal basis of E, i.e.,, (&, &)p = £ DE = =£6;, where 6;; is Kronecker’s
symbol. In particular, we can consider that

fz‘o
0

1= (52': €Z>D = <£i07 é-t'o)DI for Ez = |:
and

0
~1 =&, &)p = (o, &oyp, for &= [ . }, f=p+1,... k.
jo
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Then, for A & WB’(B), there exists a vector zg = [£1, ... ,&]n of E such that

(Bé&,&1)p ... (B&., &)p

A = (B, To)p = z3DBzy = 7* : : n
(B, be)p ... {Bé Erip
and
€7
1 =Azo,zo)p =70" | | D& .. &ln = n*dag (Ip, —Le—p) 7.
&
Fornp =[] ], withmy € C?, clearly ||m|| = 1 and
{B&1, &p ... (B&, &)p
A=l : M
(Bgls ‘E‘p)D v (ngs ‘E;D)D
[ (Bi1o:é10)p, - (Bi&po,b10) D,
(Bi1o,&p0)py - (B1&po, épo) Dy
where By is the p x p principal submatrix of B. Since £, ..., &p0 are D;-orthonormal
vectors and [y > 0, the vectors D%/ 2510, e ,Di/ ZEpg are orthonormal, and by The-

oram 2.1,
A€ NR [D;”BID;WJ = NR[Bi]C NR[B]. O

Due to the fact that W' (4) = W1,(B) and Ws(A) = WF(A)uW(4) =
W (B)UWI,(B), clearly we have the following.

COROLLARY 3.2. For any hermitian matriz S, the sets NR[A] N W (A) and
NR[AINWs(A) are nonempty.

COROLLARY 3.3. For any hermitian matriz S, NR[A] NV (4) # 6.

Proof. Let § = P*DP, where D = diag{D;, —D3) is a real diagonal matrix
with D1 > 0and Dy > 0. If z is an S-unit vector, then the vector y = Pz is D-unit

and VJ (4) = V{(B), where 4 = P*BP. For y = | g I, we have
1 = (Dy,y) = 0"D:8 = (8" Dy/*)(D1/*6)
and
<By1 y) = (Ble'n 9) = <‘§191: 61):

where B; is a submatrix of B and 4; = Di/gﬁ, By = DY2B, DY/
Therefore,

NR[B)] = NR[B] C NR[B] = NR[4]
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L] T ¥ T T T T

10} L 1

18 L L 1 L . L
<20 -15 -10 -5 ] 5 10 15

16 T T T T T

10r o]

-20 -15 -10 5 Q 5 10 15

and
NRIBy| = V5 (By) CVE(B)=V{(4). 0O
Eﬂ:.impie 3. The statement of Theorem 3.1 is illustrated in Figure 3.1 for

-1
A= 0
1

D oD
L G0 bo

first for § = diag(2,0, —4), and then for § = diag{—2, 1,4).
Another property of the numerical range of & matrix on an indefinite inner prod-
uct, an analogue of Theorem 2.2, is as follows.
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THEOREM 3.4. For any matriz A,

1
— -+
where 0 < 8 < T,

Proof. Let a vector zz € C*” such that z*(I; ® $)z = 1. Then

O

A4 e8] —i(A — %9 )
O 293 ’

(A—e20)  A4e®]

BIWes (

A+ e —i(A— 2 A)

$*(_[2 & S) Z(A _ 6219‘4) AL e?'iﬁ‘A

Y,

1
2=y (L®S) [

O eZiBA"

Wherey=%([j ; ]@I)z. Since

y(LeSy=2(LesSz =1,

{3.1) is obtained. a

On the other hand we have the foillowing theorem.

THEOREM 3.5. Let the hermitian matriz S have at least one positive eigenvalue.
Then

{

A O
(3.2) sz'@ s k

O B

A0

correspond to the Iy ® S-unit vector v = | z | (ie., 2"z + y*Sy = 1). According to
Lemipa 2.2 in [LTU], we can consider that *Sz > 0 and y*Sy > 0 and then

) = Conv.hull(WZ1 (A4) UWZ(B)).

Proof. Let

a:*SAm+ e Y SBy
w5z 7Y y*Sy

A
A= (L8S)| o o

O
l v=2z"S5Ar +y*SBy = "5z

Hence, A is a convex combination of

z*SAz

z*Sz

y*SBy
y* Sy

€EWF(4) and € Wi(B)

and consequently

0
Wf;@,s ( o0 B }) < Conv.hull(Wd (4) U WJ(B)).
For the reverse relationship let 25z = 1. Then the vector z = | g ] is I3 @ S-unit
and due to
(LheS) A *SA
=z*5 Az
Z 9 O B Z ’
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A O
W#(B) C Wigs ([ o B D

it is implied that

A O

W;(A)cwgm( P

Similarly, for 4*Sy =1,

Therefore,

A O
W;(A)uwgf(B)ch;@s([o BD,

A O
0 B
(3.2) follows. g

These two statements lead to an analogue of (2.2) in Theorem 2.2:

. M N
(3.4) Conv.hull{W (A)UWE(A) =W/ o ([ N M D ’

wios ([ 5 3])=wee ([ 4 ]):

Similar results of (3.3) and (3.4) are obtained for VI {A).

and due to the convexity of

Wios (

Conv.hull( W1 (A) UWZ (€2 4))
(3.3) L f1] Ave¥A —i(A- M)
=Wpres 5

i{A—e®4) A4
Denoting A =M + 4N for 8 = 0, by (3.3) we obtain

and by (3.1)

4. Reduction of N R of matrix polynomials. Transferring the idea of Theo-
rem 2.1 for the numerical range of matrix polynomials L(A) we state the next propo-
sition.

THEOREM 4.1. For k <n,

(4.1) NRIL(N)] = ] NRM(N),

where the k x & matriz polynomial

Me(X) = G*(E ® L(\)G,
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with
I ... 1
E=\: : , G = diag{y,. .-, {k)nkxk,
IR S
and &1, ..., & are orthonormal vectors of C™. In (4.1) the union runs over all sets by
k orthonormal vectors of C™.
Proof. Let the vectors &1,...,& € C™ be an orthonormal basis of a subspace

E C C" and let x € E. Then

z=[6...&ly, yeCF

and
' LNz =y (& & LN [&r - Gily
GLNG ... LA
=y | ; y =y " M(Ny.
GLVG .. §L{A)E
Hence, ruaning over all sets by k orthonormal vectors, (4.1) results. |

Obviously (4.1) for k£ = 2 is simple. Denoting L({A) as

L) =+ A0 o+ A
THEOREM 4.2.
LX) O

(10" ooz )

(1 { LN 4+ e29T(N)  —i(L(A) — e¥¥T(\) D
R|:= gl o .
21 (L) — e®9T() L\ + 26T\

a nearly similar relation to (2.2) arises.

(4.2)

Proof. Let the vector z € C?™. Then, as in Theorem 2.2,

[y o 1 L[ LN +FTR) (I - HOT()
“lo eIy [T 2 | Loy - T L)+ OL() |

where

11
YE=Rla 1|”
Note that [jw| = [|2]. O

Writing L{X) = L1{A) +1Ly(A\), where the coefficlents of L1{}) and La()) are real
matrices, by (4.2) and for # = 0, we have the following corollary.

COROLLARY 4.3.
LAy o _NR
o I i)

i

Ly(A)  La(A)
—La(A)  Li(A) .
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