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In this paper we investigate bounds of the numerical range of the derivative of a rational matrix function.
Moreover, some results on connectedness are presented.
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1 INTRODUCTION

Let C[z] (R[z]) be the algebra of polynomials in one variable z with coefficients in C(IR)
and let

mazﬁﬁq (1)
q,](z) ij=1

be an n x n rational matrix function (r.m.f.), where the elements p;(z), g;(z) € C[z]
and g;;(z) are not identically zero. In linear system theory, a rational matrix function
gives the input—output map and admits a representation

W(z)=D+ C(zI — A)~'B ®)
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if and only if deg{p;(z)} < deglq;(2)},i,j=1,...,n (see for example [3]). For D =
W(oo), BT =[00 --- 01], C=[Hy --- H;_1] and

0 I 0
4= : : " : ’
0 0o .- I
—Ay —Ay ... —A;_
the r.m.f. W(z) in (2) is written as
W(z) = H()L(z) ™, 3)

where
=1 =1
H(z) = ZZJHj , L(z) =Z'T + 2/ 4;
=0 j=0

are n X n matrix polynomials.
Denoting by mi(z) the least common multiplier of ¢;(z) (i,j = 1,...,n), itis clear that

W(z) =m(z)"' K (), 4)
where K(z) is a matrix polynomial and deg{m(z)} > deg{ K(z) }. For the remainder of
this paper, the degrees of K(z) and m(z) are denoted by n; and n;, respectively. Let
o(m) be the set of the roots of m(z). The numerical range of the rm.f. W(z) in (4) is
defined by

NR[W (2)] = {u € C\ o(m) : x*W(u)x =0, for some nonzero x € C"}.
Notice that by (4),
NR[W(2)] = NR[K(2)]\ o(m), )
and thus NR[W(z)] is not always closed since in general, NR[K(z)] No(m) # 0.

When W(z) = Iz — A, NR[W(z)] coincides with the classical numerical range (or
field of values) of the matrix A,

NR[A] = {x*Ax : x e C", x*'x=1}.

Let o(W) = {z : det W(z) = 0} be the spectrum of W(z) and let zy € o(W). Then there
exists a nonzero vector xo € C" such that W(zy) x xo = 0. Hence, zo € NR[W(2)], i.e.,

o(W) c NR[W(2)].

In the last few years, the numerical range of matrix polynomials has been studied sys-
tematically, and a number of interesting results have been obtained (see e.g. [1,2,6—10]).
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In general, the numerical range of a matrix polynomial K(z) is not connected or convex.
The distribution of the bounded connected components of NR[K(z)] plays an impor-
tant role in the factorization of K(z) (see e.g. [5], [10] and [9]). Bounds for the number
of the connected components of NR[K(z)] are established in [2] and [6], and the location
of NR[K(z)] in a circular annulus centred at the origin is considered in [7].

In Section 2, motivated by the work of M. Marden [4] on scalar polynomials and
their derivatives, and the results of [7], we locate the numerical range of the derivative
of a rm.f. W(z) in circular/elliptic annuli. In Section 3, we study the relationship
between the numerical range of a matrix polynomial K(z) and the numerical range
of its derivative K'(z). Moreover, the connectedness of the numerical range of quadratic
matrix polynomials is investigated. We remark that this class of matrix polynomials
is one of the most important classes for applications (see [5] and the references
therein). Finally, two necessary propositions on scalar polynomials are provided in the
Appendix.

2 LOCATION OF NUMERICAL RANGES
Consider the r.m.f. W(z) in (4), with
K(z) =K, 2" +---+ Kz + Ko.

Readily one can verify the following properties:

I. NR[W(z+ a)] = NR[W(z)] — « for any « € C.
II. NR[W(az)] = a~! NR[W(z)] for any nonzero « € C.
III. If the m x n matrix S (m < n) has full rank, then

NR[S*W(z)S] € NR[W(2)],

and equality holds if m = n.
IV. If all the coefficients K; (j=1,...,n;) of the matrix polynomial K(z) have
a common nonzero isotropic vector xo € C”, i.e., xjKxo = 0, then

NR[¥(z)] = C\o(m).

V. If the rm.f. W(z) in (1) is real (i.e., p;(2), q;(z) € R[z]), then NR[W(2)] is sym-
metric with respect to the real axis.
VI. NR[W(z)] is bounded if and only if 0 ¢ NR[K,,].
VILI. NR[W(2)"'] = NR[W (2)\o(W).

The expression of W (z) in (4) yields the properties I-V through the matrix polynomial
K(z), and for VI, it is clear that NR[W(z)] is bounded if and only if NR[K(z)] is
bounded. A necessary and sufficient condition for the boundedness of NR[K(z)] is
that 0 & NR[K,,] (see [2]). For VII (see also Theorem 2.2 in [6]), observe that
zo € NR[W(2)]\o(W) if and only if 0 € NR[W(zy)]. Therefore by

X W (z0)[W (20)] W(z9)*x = 0
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we obtain (W (zo)*x)* W (z0) (W (z)*x) = 0, which implies 0 € NR[W(zy)"'] and z €
NR[W(z)7']. Conversely, if zg € NR[W(2)™'], then zy & o(W) and 0 € NR[W(z)'].
Thus, 0 € NR[W(z0)], [7] and zy € NR[W (2)]\a(W).

Example 1 Let

z/(z—1) 0 C[AGE+D 0 1
1/z 1/<z+1>}_[ L(zz—l)

B 1 1 07, 1 07, 0 o0 0 0
‘z(z?—l)([o 0}”[1 1}”[0 —1}”[—1 OD

Since 0 € NR([ 4 0]). NR[W(2)] is unbounded (Fig. 1). For

W(z) = |:

21 72—z

3 2
(I +h)z +z 0 } h=0.1, 02

Wh(z) - |: 21 hz? =+ 2z
the origin does not belong to the numerical range of the leading coefficient [(')+/’ 2],
and thus NR[W,(z)] is bounded (Fig. 2).
Denote by A(c : r, R) the circular annulus centred at the point ¢, with inner radius r
and outer radius R, and recall the set of the roots of m(z) of degree ny, o(m). A
proposition on the location of NR[W’(z)] is the following.

FIGURE 1 The unbounded NR[7(2)].

2 10 -8 -6 — -2 o 2 92 —10 -8 -6 — -z o 2

FIGURE 2 Two bounded numerical ranges.
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ProrositioN 1 Suppose that NR[W(z)] and o(m) lie inside two circular annuli,
A0 : 7o, Ro) and A(0 : 11, Ry), respectively. Then NR[W (2)] lies in the circular annulus

. R R
D1 = A(O : m1n{r1 ) —Rl }, w)
ny —m
when ry > Ry, or in the circular annulus
R R
D, = A(O smin{ryg,r — Ro}, maX{Rl, w})
ny —ny

when Ry < ry.
Proof By (4), it follows that for every nonzero x € C",

xX*K'(z)x m(z) — x*K(z)x m'(z2)
m(z) '

X*W'(2)x = (6)

Since all the roots of f,(z) = x*K(z)x belong to the region ry < |z| < Ry, by Proposition
I in the Appendix, there exist a;(x) € A(0: rg, Rg), and ay € A(0:r,R;), (notice
that m(z) does not depend on x), such that every root u of the polynomial x*W’(z)x
is equal to «;(x), or ay, or

_ mai(x) — mey 7)

ny —m
In the latter case,

- | ()] + 71| _mRy+mR, .

] <

ny, —n Tom—n

Next we consider two cases.
Case (i), suppose ro > R;. Then we have ny|a((x)| > nyrg > nirg > n Ry > nylay|, and
(7) implies

- Imaloi ()| — nileal|  malon ()] — ny e
ny —ny ny —nm

nro —n R narg — n R
) 1R 1o 1481

> > rg — Ry.
npy —np ny
If w =ay, then || > r; and consequently |u| > min{r;,ro — Ry }. Similarly, if u =
ay(x), then || < Ry and since Ry < (myRy + nRy)/(ny — ny), clearly u € D;.
Case (ii), suppose Ry < r;. Then by (7), we obtain

_mon(x) — may| - [maoe; (x) — nyos|
ny — ny np

[l

ny
ay(x) —n—zaz > Jai(x) — az|

> [l (xX)| = loa|| = lea| = et (x)| > r1 — Ry.
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Since either u = a(x) € A0 :ro, Ry), or w=oar € A(O:r,Ry), or rj — Ry < |u] <
(nyRg + n1Ry)/(ny — ny), we conclude that u € D;. |

CoroLLARY 1 If A0 : ro, Ry) and A(O : ry, Ry) in the above proposition have nonempty
intersection, then NR[W'(2)] lies in the disc

R R
S<O, maX{Rb w})

ny —n
Remark 1 1If NR[W(z)] is bounded, then by [7], we can choose A(0 : ry, Ry) with

min |x* Kox|
[lx||=1

ro =
O~ max |x*Kox| + max{max|x*K,x|}’
A0 | x[=1

|

Furthermore, for m(z), we can always consider the circular annulus A(0: ry, R;)
in (A.1).

Example 2 Let W(z) be a r.m.f. as in (4), with

X*K;x
xX*K,, x

Ry=1+ max max
=0, 1,...,mi—1 | [x]=1

Kz =17 + K22 + Kiz + K
-5 2 4 0 3.0
=17+ 2+ z+
0 -5 6 4 4 6

and m(z) = (z + 1)(z — 2)(z> + 5). One can verify that NR[K;] = S(=5,1), NR[K|] =
S(4,3), and NR[Ko] = {u+ iv: u,v € R, (u — 4.5)*/(2.5%) +1?/22 = 1}, and thus,

min |x*Kyx|
IxI=1 1

ro = =5
max |x*Kox| + max |x*K.x| 7
Ixll=1 =1,2,3

and Ry = 1 +max{7,7,6} =8, i.e., NR[K(z)] C A(0: %, 8). For the scalar polynomial
m(z) = z4 — 23 4 322 — 52 — 10, (A.1) implies r; = % and R; = 11. Since

10 —4 =20 2 —14 0
Fi@)m(z) = fu(z2)m'(z) = X*{—Z61+ |: j|z5 + |: :|Z4 + |: :|z3
0 10 —-18 =20 —4 =26

-8 —10 82 —40 25 0
+ 2+ z+ x
-6 1 24 64 —40 —10
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and 0 e NR([ 3> _0]), it follows that 0 € NR[W'(z)] and NR[W'(z)] C S(0, 55).

ProrosiTioN 2 Suppose that NR[W(z)] and o(m) lie inside two circular annuli
A0 : ro, Rg) and A(c:ri, Ry), respectively. If |c|+ Ry <ryg, then NR[W'(z)] lies
outside of the ellipse with foci at the origin and ¢ and with major axis ro — Ry, and inside
the circle S(0, (nyRy + n Ry + nylcl)/(ny — ny)).

Proof For every u € NR[W’(z)], as in Proposition 1, there are «;(x) € A(0 : ro, Ro)
and ay € A(c: 1y, Ry) such that u coincides with one of these numbers, or by (7),
w = (mai(x) — naa)/(ny — ny).

Then

- ny o (x)| + nylay — cf + nyc| - mRy + m Ry + nylc|

lu| <

ny — Ny ny —n
If w = a1(x) (or u = ), clearly || < Ry or |u — ¢| < Ry. Otherwise, by (7), we obtain

om_ m—el _lp=cla—cl _ lu—cl+ R (8)
n e —ap(v)] I — ai(x)| 1] = lea ()]

Moreover, we have |u| < |aj(x)] < Ry, because || > |a1(x)| > ro implies

lu—cl+ R |u—cl+R

1 < <
Il — leey (x0)] lul — Ro

< 0,

a contradiction. Thus, by (8),

lw—cl+ R
T (%)) = [l

and consequently
I —cl+lul = ler(x)] = Ry = rg — Ry > 0.

This curve is the prescribed ellipse, since |c|/(ro — Ry) < 1. |

Notice that for ¢ = 0, the above proposition implies
(ro — R1)/2 < |l < (mRo + miRy)/(ny — m).

Remark 2 Let the matrix polynomials K;(z) and K;(z) of degree n correspond to the
r.m.f. Wi(z) and W>(z), respectively, and

NR[K(2)] C A : 7, R) (= 1,2).
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Then by Proposition II and the remarks in the Appendix, for every u € NR[A K (z) +
MK5(2)], it follows that

— wR R R
wfwfw when 71 > wRo.
1+(1) |1—a)k|
— R R R
PR < e hen Ry < or. ©)
1+60 |1—a)k|

Especially, for w = 1, we have

rn—R R+ R

12 2§|M|§|11_wk2| when 71 > Ry,

—R R R

PRl < 1T when >R (10)
2 [T — g

Clearly, (9) and (10) yield a localisation of the spectrum of A K (z) + A2 K>(z) and hence
of the rm.f. My W1(2) + M W>(2) in a circular annulus.

3 A RELATIONSHIP BETWEEN THE NUMERICAL RANGES OF K(z) AND K'(z)

Let W(z) be an n x n rm.f. as in (4), where K(z) = K;,,z" +--- + Kiz+ K. As it is
clear from Eq. (5), the investigation of the numerical range of K(z) is substantial for
that of NR[W(z)]. Since the poles of W(z)are excluded in the definition of
NR[W(z)], NR[W(z)] might have more connected components than NR[K(z)] (when
poles of W(z) are node points of the boundary dNR[K(z)]). Following, we present
some propositions relating NR[K(z)] with NR[K(z)], which will help us to understand
the connectedness of the numerical range of W(z).

ProposiTioN 3 If NR[K(2)] is bounded and NR[K(z)] "N NR[K'(z)] = 0, then NR[K(z)]
has exactly ny connected components.

Proof Since NR[K(z)] N NR[K'(z)] = @, for every nonzero vector x € C", the poly-
nomial py(z) = x*K(z)x has n; disjoint roots. Hence, by [1], NR[K(z)] has exactly n;
connected components. |

Notice that if NR[K(z)] is bounded and has k < n; connected components, then
NR[K()] "NR[K'(2)] # 0.
Let now Ai(x) (i=1,2,...,n;) be the roots of the polynomial
px(2) = xX"K(2)x,
and let A; be their ranges of values. Then |Ji; A; = NR[K(z)], and by [1],

ANAONRIK G # B ().
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FIGURE 3 A connected numerical range.

It is also worth noting that

U (AiN A;j) # NR[K(2)] N NR[K'(2)] (11)

I<i<j=m

since a common point ¢ of the ranges NR[K(z)] and NR[K’(z)] may correspond to
different vectors, i.e., x*K(¢)x = y*K'(¢)y = 0 for some unit vectors x # y.
For example, if we consider the matrix polynomial

0 4 1 0
K(Z)ZIZZ+K‘Z+K°=122+[—41' ol]z+[0 2}’

then NR[K(z)] is sketched in Fig. 3, and NR[K'(z)] = [—2,2]. The ranges of values
of p.(z) are

R {—x*le + (K1 x)* — (x*Kax)]'?
1= )

5 x e C?, x*x:l}

and

A {—x*le — [(x*K1x)* — 4(x*Krx)]'/?
2 =

5 cxeC? x*x:l}.

One can see that 2 € NR[K(z)] N NR[K'(z)] and 2 € A;, but there is no unit x, € C
so that 2 is a double root of x{K(z)xo and 2 ¢ A,. Hence, (11) is verified. Furthermore,
by [8], we know that

A1 N Az N NR[K/(Z)] ;é ﬂ

ProrosiTiON 4 If the matrix polynomial K(z) is selfadjoint (i.e., with Hermitian coeffi-
cients) and NR[K(2)]NR = @, then for an arbitrary matrix B,

NR[LINR = 0,
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where

1
Ky 2"t 4 4~ K 22 + Koz + B.

L(z) = 5

n +1

Proof Since L'(z) = K(z) and NR[K(z)] "R = @, there does not exist a nonzero
vector x € C" such that the polynomial x*L(z)x has a double real root. Therefore,
by [8], it follows that either NR[L(z)]NR = @, or NR[L(z)] c R. If NR[L(z)] C R,
then by [4, Theorem 6.2], NR[K(z)] C R. This is a contradiction and the proof is
complete. |

Especially, for a self adjoint K(z) = Kz + Ky, a full description of NR[K(z)] in terms
of the algebraic properties of the coefficients is presented in [2, Theorem 4.1]. This
enables us to check if the numerical range of L(z) = %Kl 22 4+ Koz + B is connected.

Quadratic matrix polynomials of the form K(z) = Iz> + K,z + K, arise in many
applications, and thus, they are of special interest. Consider the matrix poly-
nomial M(z)

M(z) = —K(iz) = P(z) — iQ(2), (12)
where

P(z) = IZ2 + S(K1)z — H(Ko),  Q(z) = H(K))z + S(Ko)

and H(K) = (K + K*)/2, S(K) = (K — K*)/(2i) are the Hermitian and skew-Hermitian
part of matrix K, respectively. Obviously, by (12), we have

NR[M(z)] = NR[K(iz)] = —i NR[K(2)],

i.e.,

NR[M(z)] = e ™* NR[K(z)]. (13)
If

conv.hull{ NR[P(z)] "NR} N NR[Q(z)] = 4,
then NR[M(z)] "R = @ and by (13),
NR[K(2)] N iR = #.

Thus, if NR[K(z)] lies either in the left open half plane, C;, or in the right open half
ile;ngn (\[?0 }of C, then P(z) and Q(z) are hyperbolic matrix polynomials, i.e., for every

(X*S(K))x)* +4x*H(Ko)x > 0

and the matrix H(K) is definite.
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Denoting by |A(*)|nax the maximum absolute value of the eigenvalues of a matrix,
then by [7], NR[P(z)] is a subset of the circular annulus A(0 : py, p2), where

min |x*H(Kp)x|
xlI=1

T (H(Ko)max + max{1, [AS(K))max }

L1

and
P2 = 1+ maX{M(S(Kl)Nmaxs |)‘(H(K0))|max}-

Moreover,
NR[P(2)]NR C [-p2, — p1] U [p1, p2],

and combining this relationship with the results of [6] and Theorem 4.1 in [2], we have
the following.

Remark 3 Consider a quadratic matrix polynomial K(z) as in (12).

I. Suppose that H(K)) is definite and for every unit vector x € C",

|X*S(Ko)x|
|x*H(K)x|

Then it is easy to see that
{NR[P(z)] N R} N NR[Q(2)] = 0.

Moreover, by Theorem 1.1 in [6], NR[P(z)] is a subset of C,, or C;, if P(z) is a
hyperbolic matrix polynomial. Otherwise, NR[K(z)] consists of two connected
components.

II. If H(K)) is definite and for every unit vector x € C",

W S(Ko)¥l
e H(K)x| P

then by Theorem 1.2 in [6], NR[K(z)] has two connected components, one in the
right and one in the left open half plane.

II. If H(K;) is indefinite, S(Kj) is definite and for the maximum negative eigen-
value A and minimum positive eigenvalue & of the selfadjoint pencil Q(z) in (12),
we have

min{ A, §} > po,

then by Theorem 1.2 in [6], NR[K(z)] consists of two components, one in the right
and one in the left open half plane.
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APPENDIX

Consider the nth degree scalar polynomial, f(z) = ag + o1z + - - - + @, z". As it is known,
see [4, pp. 123, 126], all the roots of f(z) lie in the circular annulus

D={zeC:r <|z| < R},
where

. a
r o= mlnﬂ and R; =14+ max

t=1,...n|ag| + |otz] =0, 1,...,n—1|0ty

ﬁ‘. (A1)

According to [4], we define as a circular region every region in the complex plane, which
consists of a closed interior or exterior of a circle.

ProrosiTioN 1 If all the roots of the polynomial f1(z) of degree ny and the polynomial
f2(2) of degree n, belong to the circular regions Cy and C,, respectively, then every
root zy of the polynomial

g(2) = f1(@)f2(2) = fi(2)f3(2) (A.2)
is equal to
z0 = may — ma (A.3)
ny —mn

for suitable ay € Cy, and ay € Cy, or zy = a1, or zg = ;.
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Proof Since g(z) is linear and symmetric in the roots of fi(z), f2(z), by Walsh’s
Theorem [4, p. 62], there exist suitable points «; € C; and «y € C,, such that every
root zy of g(z) in (A.2) annihilates the polynomial

nz—a)" 'z — o) —mo(z — )" (z — an)

If zg # a;,an, then (A.3) is obtained straightforward. |
ProposiTION I Let the polynomials f;(z) of degree n (j =1,2) be such that

o(f) CDi={zeC:r<|lz—¢g|l <R}, j=12.
Then the roots of the linear combination
J@=mf@)+rfa(2), A F#FrF#0,
lie in the sector

{Z 10 < leol — p < |z| < lcol + p; |Argz — Argeg| < arc Sm(|p|>}’
co

where

_ —w2C2 _a)|cl — 0| R+ owR

co) =

>

1 —? 1 —? l—w

n )\‘
and a):’ /——2
A

If |co| < p, then the roots of f(z) lie in the disc |z — co| < p.

<1.!

Proof By Theorem 15.4 in [4], (in a similar way as in Theorem 17.1 in [4]), we see that
every root u of f(z) lies in the locus I" of the roots of the equation

M=)+ Az —ay) =0, (A.4)

where o; (j = 1,2) vary independently over D; (j = 1,2). Thus, by (A.4) it follows

_Ol] — Wiy _()lz—()llek
r= l—a)k a 1—9,6

"If w > 1, then we consider 6= |{/—(ki/A2)| < 1.
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with wp = (=22/A)"", (6 = w!), k=1,2,...,n. Denoting by

Cl — W2
dy =——
l—a)k

for [1y/X1| < 1, we have

o — oo — okl _ o —al A forles — ol

1T — ol

—dy| =
| — dil . T

<R1+CL)R2<R1+C()R2_R1+0)R2
T -l T =l -

and

(O] —602

(0 = w1 = @?)

d/c —Co |(,()k| w

[1—w?| 1-—w

1 —C “

Therefore, w lies in the disc

(A.5)

If |¢o| > p, then the origin is an exterior point of the disc in (A.5) and I" is a subset
of the circular annulus

lcol — p < |z < |eol + p. (A.6)

Moreover, if

6 = arc sin (L),
|col

then the locus T is the sector defined by (A.6) and
Argey — 0 < Argz < 6 + Argey.

If |col < p, then o( f) lies in the disc in (A.5). |

Remark I The locus T in the above proof can be a multiple connected set, since for
ry > a)Rz,

o] — | — |ogl|laa — ¢ r— owR
Iz—dklel 1| = loxllaz 2||21 2.
I+ |l l+w
and for Ry < wrs,
wr, — R
Iz —dy| > =1

l+ow
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Note also that if A; = A, = 1, then w; = +/—1 and w = |wg| = 1. In this case, we have

R +R
2 d| < L1
11 — ayl
Furthermore, for r; > R,
r —R
|z —di| = %a
and for R < ry,

n—R
|z — di| = ——.



