
Int. J. Signal and Imaging Systems Engineering, Vol. 1, Nos. 3/4, 2008 279 

Copyright © 2008 Inderscience Enterprises Ltd. 

FIR implementation of the Steady-State  
Kalman Filter 

Nicholas Assimakis* 
Department of Electronics, 
Technological Educational Institute of Lamia, 
35100 Lamia, Greece 
E-mail: assimakis@teilam.gr 
*Corresponding author 

Maria Adam 
Department of Computer Science and Biomedical Informatics, 
University of Central Greece, 
35100 Lamia, Greece 
E-mail: madam@ucg.gr 

Abstract: In this paper, an FIR implementation for the Steady-State Kalman Filter (SSKF) is 
proposed. The method requires the knowledge of a subset of previous time measurements.  
The proposed algorithm is faster than the classical one, especially for large estimation time.  
The proposed implementation is also applicable to periodic models. 

Keywords: KF; Kalman filter; steady state; periodic model; FIR-filters; matrix theory. 

Reference to this paper should be made as follows: Assimakis, N. and Adam, M. (2008)  
‘FIR implementation of the Steady-State Kalman Filter’, Int. J. Signal and Imaging Systems 
Engineering, Vol. 1, Nos. 3/4, pp.279–286. 

Biographical notes: N. Assimakis received his PhD in Computer Engineering and Informatics 
from University of Patras in 1993. His academic position is Assistant Professor at the Department 
of Electronics, Technological Educational Institute of Lamia, Greece. His research interests 
include estimation theory, Kalman filter, Riccati equation, digital signal processing, algorithms, 
numerical analysis. 

M. Adam received her PhD in Mathematics from National Technical University of Athens  
in 2001. Her current position is Visiting Assistant Professor at the University of Central Greece. 
Her research interests include linear algebra, matrix analysis, numerical range, graphs and 
statistic models associated with matrices, numerical linear algebra, applications in dynamical 
systems and control theory. 

 

1 Introduction 

Estimation plays an important role in many fields  
of science. The discrete-time Kalman Filter (KF)  
(Kalman, 1960) is the most well-known algorithm that 
solves the estimation/filtering problem. Many real-world 
problems have been successfully solved using the Kalman 
filter ideas; filter applications to aerospace industry, 
chemical process, communication systems design, control, 
civil engineering, filtering noise from two-dimensional 
images, pollution prediction and power systems are 
mentioned in Anderson and Moore (1979). The SSKF is 
briefly presented and an FIR implementation is proposed 
and applied to periodic models. The proposed algorithm is 
faster than the classical implementation. 
 
 

2 Steady-State Kalman Filter 

The estimation problem arises in linear estimation and is 
associated with time-varying systems described by the 
following state-space equations: 

( 1) ( 1, ) ( ) ( )x k F k k x k w k+ = + +  (1) 

( 1) ( 1) ( 1) ( 1)z k H k x k v k+ = + + + +  (2) 
where x(k) is the n-dimensional state vector at time k, z(k)  
is the m-dimensional measurement vector, F(k + 1, k)  
is the n × n system transition matrix, H(k + 1) is the m × n 
output matrix, {w(k)} and {v(k)} are the plant noise and  
the measurement noise processes; they are assumed  
to be Gaussian, zero-mean white and uncorrelated random 
processes and Q(k), R(k + 1) are the plant noise and  
 
 



280 N. Assimakis and M. Adam  

measurement noise covariance matrices, respectively. The 
vector x(0) is a Gaussian random process with mean x0 and 
covariance P0 and x(0), {w(k)} and {v(k)} are independent. 

The filtering/estimation problem is to produce an 
estimate at time L of the state vector using measurements  
till time L, i.e. the aim is to use the measurements set 
{z(1), …, z(L)} to calculate an estimate value x(L/L) of the 
state vector x(L). The discrete-time KF is summarised in the 
following: 

2.1 Kalman Filter (KF) 

1

( ) ( / 1) ( )

[ ( ) ( / 1) ( ) ( )]

T

T

K k P k k H k

H k P k k H k R k −

= −

⋅ − +  (3) 

( / ) [ ( ) ( )] ( / 1)P k k I K k H k P k k= − −  (4) 

( 1/ ) ( ) ( 1, ) ( / ) ( 1, )TP k k Q k F k k P k k F k k+ = + + +  (5) 

( / ) [ ( ) ( )] ( / 1) ( ) ( )x k k I K k H k x k k K k z k= − − +  (6) 

( 1/ ) ( 1, ) ( / )x k k F k k x k k+ = +  (7) 

for k = 0, 1, …, with initial conditions x(0/–1) = x0 and 
P(0/–1) = P0, where x(k/k) is the estimate value of the  
state vector at time k, P(k/k) is the corresponding estimation 
error covariance matrix, K(k) is the KF gain, x(k + 1/k) is the 
prediction value of the state vector at time k, P(k + 1/k)  
is the corresponding prediction error covariance matrix.  
All basic terms involved in the KF equations are defined  
in Appendix A. 

For time-invariant systems where the system transition 
matrix, the output matrix, the plant and measurement  
noise covariance matrices are constant, the resulting  
Time-Invariant Kalman Filter (TIKF) takes the following 
form: 

2.2 Time-Invariant Kalman Filter (TIKF) 

( 1/ ) ( / )x k k Fx k k+ =  (8) 

( 1/ ) ( / ) TP k k FP k k F Q+ = +  (9) 

1( 1) ( 1/ ) [ ( 1/ ) ]T TK k P k k H HP k k H R −+ = + + +  (10) 

( 1/ 1) ( 1/ ) ( 1)
[ ( 1) ( 1/ )]

x k k x k k K k
z k Hx k k

+ + = + + +
⋅ + − +  (11) 

( 1/ 1) ( 1/ ) ( 1) ( 1/ ).P k k P k k K k HP k k+ + = + − + +  (12) 

For time-invariant systems, it is well known (Kalman, 1960) 
that if the signal process model is asymptotically stable, 
then there exists a steady-state value P  of the prediction 
error covariance matrix, which is reached at time k = s. 

In this case, the resulting discrete-time SSKF takes the 
following form: 

2.3 Steady-State Kalman Filter (SSKF) 

( 1/ 1) ( / ) ( 1)x s k s k Ax s k s k Bz s k+ + + + = + + + + +  (13) 

where 

[ ]A I KH F= −  (14) 

B K=  (15) 

Remarks 

1 SSKF requires the implementation of TIKF for s 
recursions, i.e., until the steady-state time k = s is 
reached. 

2 SSKF is a recursive algorithm: the calculation  
of the estimate at time s + k + 1 requires the estimate  
at the previous time s + k. 

3 SSKF has a structure of an IIR filter. 

4 The matrices A and B can be calculated off-line: first 
the corresponding discrete-time Riccati equation 
(Anderson and Moore, 1979) 

1

( 1/ ) ( / 1) ( / 1)

[ ( / 1) ] ( / 1)

T T

T T

P k k FP k k F Q FP k k H

HP k k H R HP k k F−

+ = − + − −

⋅ − + −  (16) 

is solved and then the steady-state gain K  is 
1[ ] .T TK PH HPH R −= +  (17) 

3 FIR Steady-State Kalman Filter 

In Higham and Knight (1995), it is established that “if the 
spectral radius of a matrix A is less than 1, then the 
computed powers of A can be expected to converge to 
zero”; thus, considering that all eigenvalues of F lie inside 
the unit circle, we have (Assimakis et al., 2003) that the 
matrix A in equation (14) has the following important 
property: 

0.k
kA →∞→  (18) 

Owing to the computer accuracy, this property of matrix A 
leads to the conclusion (Assimakis et al., 2003) that there 
exists some v, such that: 

0 and  0, 1, 2, ...iA A iν ν +≠ = =  (19) 

Thus, the following implementation of the SSKF is derived 
(Assimakis et al., 2003). 

3.1 FIR Steady-State Kalman Filter (FIR-SSKF) 

( / ) ( ) ( )
k

j k
x s k s k c j z s j

ν
ν ν

+

=
+ + + + = +∑  (20) 

where there exists some v as in equation (19) and 

( ) , , ..., .k jc j A K j k kν+ −= = +A  (21) 

Remarks 

1 FIR-SSKF requires first the implementation of TIKF 
until the steady-state time is reached and subsequently 
the implementation  
of SSKF for v recursions. 



 FIR implementation of the Steady-State Kalman filter 281 

2 FIR-SSKF is not a recursive algorithm: there is no need 
for any previous estimates calculation. The method 
requires the knowledge of a subset of v + 1 previous 
time measurements to calculate the state estimate.  
The number of the needed previous time measurements 
is a-priori known (i.e., before the implementation of the 
filter): v can be determined off-line. 

3 FIR-SSKF has a structure of an FIR filter. 

4 The steady-state prediction error covariance matrix  
is calculated by off-line solving the corresponding 
discrete-time Riccati equation (16) using suitable 
techniques (Assimakis et al., 1997; Lainiotis, 1975; 
Lainiotis et al., 1994). Then, the steady-state gain and 
the matrix A are calculated off-line using equations (17) 
and (14). Finally, v in equation (19) and the coefficients 
c(j) in equation (21) are calculated off-line. 

It is obvious that v in equation (19) can be determined  
with respect to the desired accuracy. In fact, instead  
of equation (19), we are able to use: 

and , 1, 2, ...iA A iν νε ε+> ≤ =  (22) 

where ε is a small positive real number. 
The behaviour of the proposed implementation is 

presented in the following examples. 

Example 1: Let us assume a simple scalar (n = 1 and m = 1) 
time-invariant model: F = 0.8, H = 1, Q = 2 and R = 0.1 
with initial conditions 

0 0(0 / 1) 0 and (0 / 1) 0.x x P P− = = − = =  

The steady-state time is reached after the implementation of 
TIKF for s = 7 recursions. 

The state x(k) and the calculated estimates x(k/k) are 
plotted in Figure 1, using SSKF and FIR-SSKF for v = 5. 
The calculated estimates using SSKF and FIR-SSKF are 
very close to each other. 

Figure 1 State x(k) and estimates x(k/k) using SSKF and  
FIR-SSKF 

 
 
 

Example 2: Using Monte Carlo simulation, the estimates 
are calculated for time k = 1, …, 100 by implementing 
SSKF and FIR-SSKF for various values of ε. For 100 
Monte Carlo runs, the mean absolute error decreases as the 
accuracy increases, as shown in Table 1. 

Table 1 FIR-SSKF for different desired accuracy: mean 
absolute error 

Accuracy 

ε v Mean absolute error 

10–6 5 0.0160 
10–8 6 0.0159 
10–12 9 0.0151 
10–16 12 0.0146 

4 FIR Steady-State Periodic Kalman Filter 

The proposed implementation is also applicable to periodic 
models. 

In the case of periodic model, the matrices F(k + 1, k), 
H(k + 1), Q(k) and R(k + 1) are periodic with period p, i.e.: 

( 1 , ) ( 1 ( 1) , ( 1) )F k ip k ip F k i p k i p+ + + = + + + + +  (23) 

( 1 ) ( 1 ( 1) )H k ip H k i p+ + = + + +  (24) 

( ) ( ( 1) )Q k ip Q k i p+ = + +  (25) 

( 1 ) ( 1 ( 1) )R k ip R k i p+ + = + + +  (26) 

for k = 0, 1, …, p – 1 and i = 0, 1, … 
The corresponding discrete-time periodic Riccati 

equation has as follows: 

1

( 1/ ) ( ) ( 1, ) ( / 1) ( 1, )

( 1, ) ( / 1) ( )

                     [ ( ) ( / 1) ( ) ( )]

( ) ( / 1) ( 1, ).

T

T

T

T

P k k Q k F k k P k k F k k

F k k P k k H k

H k P k k H k R k

H k P k k F k k

−

+ = + + − +

− + −

⋅ − +

⋅ − +  (27) 

It is known (Varga, 2005) for periodic systems that the 
discrete-time periodic Riccati equation has a steady-state 
periodic stabilising solution with period p: 

( 1 / ) ( 1 ( 1) / ( 1) ).P k ip k ip P k i p k i p+ + + = + + + + +  (28) 

Then, it is obvious that the Kalman filter gain matrix K(k) 
becomes periodic with period p: 

( 1 ) ( 1 ( 1) )K k ip K k i p+ + = + + +  (29) 

where 
1( ) ( / 1) ( )[ ( ) ( / 1) ( ) ( )] .T TK k P k k H k H k P k k H k R k −= − − +  (30) 

Combining equations (6) and (7), we are able to write: 

( 1/ 1) ( 1, ) ( / ) ( 1) ( 1)x k k A k k x k k K k z k+ + = + + + +  (31) 
 
 



282 N. Assimakis and M. Adam  

where 

( 1, ) [ ( 1) ( 1)] ( 1, ).A k k I K k H k F k k+ = − + + +  (32) 

We observe that the matrix A(k + 1, k) becomes periodic 
with period p: 

( 1 , ) ( 1 ( 1) , ( 1) )A k ip k ip A k i p k i p+ + + = + + + + +  (33) 

where 

( 1, ) ( 1, ) ( 1) ( 1) ( 1, ).A k k F k k K k H k F k k+ = + − + + +  (34) 

Thus, in the steady-state case, after the steady-state time is 
reached in s periods, the resulting discrete-time Steady-State 
Periodic Kalman Filter (SSPKF) has as follows: 

4.1 Steady-State Periodic Kalman Filter (SSPKF) 

( 1/ 1)
( mod 1, mod ) ( / )

( mod 1) ( 1)

x sp k sp k
A k p k p x sp k sp k

K k p z sp k

+ + + +
= + + +

+ + + +
 (35) 

for k = 0, 1, …  

Remarks 

1 SSPKF implementation requires the KF implementation 
for k = 0, …, sp to calculate the estimate x(sp/sp). 

2 The steady-state periodic prediction error covariance 
matrix ( 1, )P k k+  is calculated by off-line solving the 
corresponding discrete-time periodic Riccati equation. 
Then, the steady-state periodic gain matrix ( 1)K k +  
and the corresponding matrix ( 1, )A k k+  are calculated 
off-line using equations (30) and (34), respectively. 

We define the matrix 

( , 1) ( 1, 2) ... ( , 1),
,     

i
r

A i i A i i A r r i r
A

I i r
 − ⋅ − − ⋅ ⋅ − ≥

= 
<

 

Note that if all the singular values of 
(1, 0), (2, 1), , ( , 1)A A A p p −…  lie inside the unit circle, then 

it follows that all eigenvalues of the product matrix 
1 ( , 1) ... (2,1) (1,0)PA A p p A A= − ⋅ ⋅ ⋅  lie also inside the unit 

circle; thus, considering that 1
PA  has spectral radius less 

than 1 (i.e., all eigenvalues of 1
PA  lie inside the unit circle), 

we have that the computed powers of 1
PA  can be expected 

to converge to zero, working as in Assimakis et al. (2003), 
concluding that there exists some v, such that: 

1 1[ ] 0 and [ ] 0, 1, 2, ...p p iA A iν ν +≠ = =  (36) 

Using equation (35) after the steady-state time is reached  
in s periods and taking advantage of the periodicity  
of the gain matrix ( 1)K k +  and the corresponding matrix  

( 1, ),A k k+  we obtain the following estimates per period 
time (p lags) using a double sum: 
 
 
 

1

1 1

( / )

( , ) ( 2 )
p

i j

x sp p p sp p p

c i j z sp jp p p i
ν

ν µ ν µ

µ
+

= =

+ + + +

= + + − +∑∑  (37) 

where 
1

1 1( , ) [ ] ( ),p j p
ic i j A A K iν − +
+=  (38) 

for i = 1, 2, …, p and j = 1, 2, …, v + 1, and some v such 
that as in equation (36). 

Moreover, analogous estimates concerning each time ϕ 
in a period time (ϕ = 1, 2, …, p) can be written, leading to a 
generalisation of the expression in equation (37): 

1

1 1

( / )

ˆ( , ) ( )
p

i j

x sp p p sp p p

c i j z sp p jp p i
ν

ν µ ϕ ν µ ϕ

µ
+

= =

+ + + + + +

= + + − +∑∑  (39) 

for 1 ≤ ϕ ≤ p, where 

1 1 1

1

[ ] ( ), 1 , 1
ˆ( , ) ( ), 1 , 1

0, , 1.

p j p
i

i

A A A K i i p j

c i j A K i i j
i j

ϕ ν

ϕ

ν
ϕ ν

ϕ ν

−
+

+

 ≤ ≤ ≤ ≤
= ≤ ≤ = +
 > = +

 (40) 

Remarks 

1 There is no need for any previous estimates calculation. 
The calculation of the steady-state estimate x(L) at 
some time L requires the use of the subset of p(v + 1) 
previous time measurements. 

2 The steady-state periodic prediction error covariance 
matrix ( 1, )P k k+  is calculated by off-line solving  
the corresponding discrete-time periodic Riccati 
equation. Then, the steady-state periodic gain matrix 

( 1)K k +  and the corresponding matrix ( 1, )A k k+   
are calculated off-line using equations (30) and (34), 
respectively. Finally, v in equation (36) and the 
coefficients ˆ( , )c i j in equation (40) are calculated  
off-line. 

3 This algorithm is a generalisation of the algorithm 
concerning time-invariant systems. In fact, in the 
special case for p = 1 and ϕ = 1, we derive the  
FIR-SSKF, i.e., the equations (20)–(21). 

4 This algorithm uses a double sum. 

Using a single sum instead of a double sum, we are able  
to write equation (37) and the corresponding coefficients  
in equation (38) as: 

( 1)

1

( / )

( ) ( )
p

k

x sp p p sp p p

c k z sp p p k
ν

ν µ ν µ

µ
+

=

+ + + +

= + − +∑  (41) 

where 
 
 
 



 FIR implementation of the Steady-State Kalman filter 283 

(( 1)div )
1 (( 1) mod ) 2( ) [ ] (( 1) mod 1)p k p p

k pc k A A K k pν − −
− += − +  (42) 

obtaining estimates per period time (p lags). The proof is 
given in detail in Appendix B. 

Moreover, we prove in Appendix C that analogous 
estimates concerning each time ϕ in a period time 
(ϕ = 1, 2, …, p), which are formed in the following: 

( 1)

1

( / )

ˆ( ) ( )
p

k

x sp p p sp p p

c k z sp p p k
ν ϕ

ν µ ϕ ν µ ϕ

µ
+ +

=

+ + + + + +

= + − +∑  (43) 

where 

(( 1)div )
1 1 1 (( 1) mod ) 2

(( 1) mod ) 2

( ) [ ]

(( 1) mod 1), 1 ( 1)ˆ( )
(( 1) mod 1),

( 1) 1 ( 1).

p k p p
k p

k p

A c k A A A

K k p k p
c k

A K k p
p k p

ϕ ϕ ν

ϕ

ν

ν ϕ ν

− −
− +

− +

 =


⋅ − + ≤ ≤ += 
− +

 + + ≤ ≤ + +
 (44) 

Note that, for 1 ≤ k ≤ ϕ yields (k – 1)div p = 0, and  
1 ≤ (k – 1) mod p + ≤ ϕ, and denoting τ = (k – 1)mod p + 1, 
the corresponding coefficients, ˆ( ),c k  are written as: 

(( 1)div )
1 1 (( 1) mod ) 2

1 1 1
1

1 1 1

ˆ( ) [ ] (( 1) mod 1)

[ ] ( )

( ).

p k p p
k p

p p

p

c k A A A K k p

A A A K

A A A K

ϕ ν

ϕ ν
τ

νϕ τ
τ τ

τ

τ

− −
− +

+
+

+ +

= − +

=

 =  

 

Owing to the known property that “the eigenvalues  
of the matrix A⋅B are the same as those of the matrix B⋅A”, 
the spectral radius of 1 1 , 1,...,pA Aτ

τ τ ϕ+  =   is less than 1, 
thus, as in equation (36), the computed powers of 

1 1 , 1, ...,pA Aτ
τ τ ϕ+  =   can be expected to converge to zero; 

whereby we conclude that ˆ( ) 0c k → , k = 1, 2, …, ϕ, 
1 ≤ ϕ ≤ p. 

Moreover, for p(v + 1) + 1 ≤ k ≤ p(v + 1) + ϕ, we take  
(k – 1)div p = v + 1 and 0 ≤ (k – 1)mod p ≤ ϕ – 1, thus 

(( 1)div )
1 1 (( 1) mod ) 2 (( 1) mod ) 2[ ] .p k p p

k p k pA A A Aϕ ν ϕ− −
− + − +=  

Consequently, substituting in equations (43) and (44), we 
derive the following implementation of the SSPKF. 

4.2 FIR Steady-State Periodic Kalman Filter  
(FIR-SSPKF) 

( 1)

1

( / )

ˆ( ) ( )
p

k

x sp p p sp p p

c k z sp p p k
ν ϕ

ϕ

ν µ ϕ ν µ ϕ

µ
+ +

= +

+ + + + + +

= + − +∑  (45) 

where 

1
(( 1)div )

1 1 (( 1) mod ) 2

ˆ( ) [ ] ( )

[ ][ ]

(( 1) mod 1).

p k p p
k p

c k A c k

A A A

K k p

ϕ

ϕ ν − −
− +

=

=

− +  (46) 
 

Remarks 

1 This algorithm uses a single sum. 

2 This implementation of the SSPKF has a structure  
of an FIR filter. 

5 Computational comparison 

The two SSKF algorithms presented earlier calculate 
estimates of the state vector very close to each other; they 
calculate theoretically the same estimates for large  
enough v. Thus, to compare the algorithms with respect to 
their computational time, we have to compare their 
calculation burdens required for the online calculations; the 
calculation burden of the off-line calculations (initialisation 
process) is not taken into account. 

Scalar operations are involved in matrix manipulation 
operations, which are needed for the implementation of the 
SSKF algorithms. Table 2 summarises the calculation 
burden of needed matrix operations. 

Table 2 Calculation burden of matrix operations 

Matrix operation Multiplications Additions Calculation burden

(n × m) ⋅ (m × k) nmk n(m – 1)k 2nmk – nk 

(n × 1) + (n × 1) – n n 

The calculation burdens of both algorithms are equal to  
each other till time s + v, due to the facts that, both SSKF 
and FIR-SSKF require the implementation of TIKF for  
s recursions until the steady-state time is reached and that 
FIR-SSKF requires the implementation of SSKF for v more 
recursions. Thus, to compare the algorithms, we compute 
the estimate value x(L/L) of the state vector x(L) at some 
time L = s + v + µ, with µ ≥ 1. 

We make the following basic remarks 

a SSKF is a recursive algorithm. Thus, the calculation 
burden of SSKF depends on the estimation time.  
It depends on the number of recursions: SSKF executes 
µ recursions after time s + v. In fact, the calculation 
burden increases as the number of recursions increases. 

b FIR-SSKF is not a recursive algorithm. Thus, it 
calculates each estimate in the same time. The 
calculation burden of FIR-SSKF does not depend on 
the estimation time; it remains constant. 

The calculation burdens of the SSKF algorithms are 
summarised in Table 3. 

Table 3 Calculation burdens of the Steady-State Kalman 
Filter algorithms 

Algorithm Calculation burden 
SSKF (2n2 + 2nm – n)µ  
FIR-SSKF (2nm – n) (v + 1) + nv 

 



284 N. Assimakis and M. Adam  

The basic conclusion is that the calculation burden of SSKF 
increases as L increases, while the calculation burden of 
FIR-SSKF remains constant for all L. This conclusion is 
verified through the following simulation example. 

Example 3: For the scalar (n = 1 and m = 1) time-invariant 
model of Example 1 in Section 3, the time improvement 
from SSKF to FIR-SSKF using s = 7, v = 5, L = 13, 14, 
…, 100 is plotted in Figure 2. The proposed algorithm  
FIR-SSKF is faster than the classical one SSPKF, especially 
for large estimation time. 

Figure 2 Time improvement from SSKF to FIR-SSKF 

 

Analogous results are derived for the SSPKF algorithms. 
To compare the algorithms, we compute the estimate 

value x(L/L) of the state vector x(L) at some time 
L = sp + vp + µp + ϕ. 

The calculation burdens of both algorithms SSPKF  
and FIR-SSPKF are equal to each other till time sp + vp, 
due to the facts that they both require the implementation of 
KF until the steady-state time is reached and that the  
FIR-SSPKF requires the implementation of the SSPKF for v 
more recursions. 

The calculation burdens of the SSPKF algorithms are 
summarised in Table 4. 

Table 4 Calculation burdens of the Steady-State Periodic 
Kalman Filter algorithms 

Algorithm Calculation burden 
SSPKF (2n2 + 2nm – n) p(µ + ϕ) 
FIR-SSPKF (2nm – n)(v + 1)p + n(pv + p – 1) 

Note that the calculation burden of SSPKF is an increasing 
function of µ and ϕ, while the calculation burden  
of FIR-SSPKF is constant (it depends on the state vector 
dimension n, on the measurement vector dimension m, on 
the period p and on the off-line calculated v). Thus, the  
 
 
 
 
 

proposed algorithm FIR-SSPKF is faster than the classical 
one SSPKF, especially for large estimation time. 

6 Conclusions 

A new approach for the SSKF is presented in this  
paper. The method is based on implementing the SSKF 
equations in a different way than the classical algorithm 
does and taking advantage of the finite computer  
precision. The method requires the knowledge of a subset  
of previous time measurements to calculate the state  
estimate; there is no need of any previous estimates  
calculation. The estimates provided by the proposed  
algorithm are very close to those provided by the  
classical algorithm. The implementation of the proposed 
algorithm is very attractive for large estimation time:  
the proposed algorithm is faster than the classical one;  
this is very important due to the fact that, in most real-time 
applications, it is essential to obtain the estimate in the 
shortest possible time. The proposed method is also 
applicable to periodic models. 

References 
Anderson, B.D.O. and Moore, J.B. (1979) Optimal  

Filtering, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 
USA. 

Assimakis, N.D., Lainiotis, D.G., Katsikas, S.K. and Sanida, F.L. 
(1997) ‘A survey of recursive algorithms for the solution  
of the discrete time Riccati equation’, Nonlinear Analysis, 
Theory, Methods and Applications, Vol. 30, No. 4,  
pp.2409–2420. 

Assimakis, N.D., Psarakis, E.Z. and Lainiotis, D.G. (2003) ‘Steady 
state kalman filter: a new approach’, Neural, Parallel and 
Scientific Computations, Vol. 11, pp.485–490. 

Higham, N.J. and Knight, P.A. (1995) ‘Matrix powers in finite 
precision arithmetic’, SIAM J. Matrix Anal. Appl., Vol. 16,  
No. 2, pp.343–358. 

Kalman, R.E. (1960) ‘A new approach to linear filtering and 
prediction problems’, J. Bas. Eng., Trans. ASME, Ser. D,  
Vol. 82, No. 1, pp.34–45. 

Lainiotis, D.G. (1975) ‘Discrete Riccati equation solutions: 
partitioned algorithms’, IEEE Transactions on AC,  
Vol. AC–20, August, pp.555–556. 

Lainiotis, D.G., Assimakis, N.D. and Katsikas, S.K. (1994)  
‘A new computationally effective algorithm for solving  
the discrete Riccati equation’, Journal of Mathematical 
Analysis and Applications, Vol. 186, No. 3, September, 
pp.868–895. 

Varga, A. (2005) ‘On solving discrete-time periodic  
Riccati Equations’, Proceedings of 16th IFAC World 
Congress 2005, Prague, July, Th-E01-TP/9, 
http://www.nt.ntnu.no/users/skoge/prost/prooceedings/ifac200
5/Topics/Topic6.html 

 
 
 
 
 



 FIR implementation of the Steady-State Kalman filter 285 

Appendix A 

Basic terms 

Term Definition 

x(k) State vector 
z(k) Measurement vector 
F(k + 1, k) Transition matrix 
H(k + 1) Output matrix 
w(k) Plant noise 
v(k) Measurement noise 
Q(k) Plant noise covariance matrix 
R(k + 1) Measurement noise covariance matrix 
x(k + 1/k) State prediction 
P(k + 1/k) Prediction error covariance matrix 

x(k/k) State estimate 
P(k/k) Estimation error covariance matrix 
K(k) Kalman filter gain 

P  Steady-state prediction error covariance matrix 

K  Steady-state Kalman filter gain 

Appendix B 

Proof of equations (41) and (42) 

Developing the double sum in equation (37) we have: 

1

1 1

1

( / )

( , ) ( 2 )

{ ( , 1) ( 2 )

( , 2) ( 2 2 )
( , 3) ( 3 2 )

( , ) ( 2 )
( , 1) ( ( 1) 2 )}.

p

i j

p

i

x sp p p sp p p

c i j z sp jp p p i

c i z sp p p p i

c i z sp p p p i
c i z sp p p p i

c i z sp p p p i
c i z sp p p p i

ν

ν µ ν µ

µ

µ

µ
µ

ν µ ν
ν µ ν

+

= =

=

+ + + +

= + + − +

= + + − +

+ + + − +
+ + + − +
+ + + + − +
+ + + + + − +

∑∑

∑

"

 

Substituting the coefficients c(i, j) in equation (38), we take: 

N

1 1
1

1
1 1

1

2
1 1

1

1 1
1

0
1 1

1

( / )

[ ] ( ) ( )

[ ] ( ) ( )

[ ] ( ) ( )

[ ] ( ) ( ( 2) )

[ ] ( ) ( ( 1) ).

p
p p

i
i

p
p p

i
i
p

p p
i

i
p

p p
i

i
p

p p
i

i I

x sp p p sp p p

A A K i z sp p p i

A A K i z sp p i

A A K i z sp p p i

A A K i z sp p p i

A A K i z sp p p i

ν

ν

ν

ν µ ν µ

µ

µ

µ

µ ν

µ ν

+
=

−
+

=

−
+

=

+
=

+
=

+ + + +

= + − +

+ + +

+ + + +

+ + + + − +

+ + + − +

∑

∑

∑

∑

∑

"

 

 

Developing the above sums we obtain: 

{

}
{

}
{

1 1 1

2 1

1

1
1 1 1

2 1

1

2
1 1 1

2 1

( / )

[ ] (1) ( 1)

(2) ( 2)

( ) ( )

[ ] (1) ( 1)

(2) ( 2)

( ) ( )

[ ] (1) ( 1)

p p

p

p
p

p p

p

p
p

p p

p

x sp p p sp p p

A A K z sp p p

A K z sp p p

A K p z sp p p p

A A K z sp p

A K z sp p

A K p z sp p p

A A K z sp p p

A

ν

ν

ν

ν µ ν µ

µ

µ

µ

µ

µ

µ

µ

+

+

+

−
+

+

+

−
+

+

+ + + +

= + − +

+ + − +

+ + + − +

+ + +

+ + +

+ + + +

+ + + +

+

"

"

}

{
}

{
}

1

1 1 1

1

1 1

1

(2) ( 2)

( ) ( )

(1) ( ( 2) 1)

( ) ( ( 2) )

(1) ( ( 1) 1)

( ) ( ( 1) )

p
p

p p

p
p

p

p
p

K z sp p p

A K p z sp p p p

A A K z sp p p

A K p z sp p p p

A K z sp p p

A K p z sp p p p

µ

µ

µ ν

µ ν

µ ν

µ ν

+

+

+

+

+

+ + +

+ + + + +

+ +

+ + + − +

+ + + + − +

+ + + − +

+ + + + − +

"

"

"

"  

(1 1)div
1 (1 1) mod 2

(2 1)div
1 (2 1) mod 2

( 1)div
1 ( 1) mod 2

[ ]

((1 1) mod 1) ( 1)

[ ]

((2 1) mod 1) ( 2)

[ ]

(( 1) mod 1) ( )

p p p
p

p p p
p

p p p p
p p

A A

K p z sp p p

A A

K p z sp p p

A A

K p p z sp p p p

ν

ν

ν

µ

µ

µ

− −
− +

− −
− +

− −
− +

 
 

⋅ − + + − + 
 + 
 = ⋅ − + + − + 
 + + 
 +
 

⋅ − + + − + 
 

"

( 1 1)div
1 ( 1 1) mod 2

( 2 1)div
1 ( 2 1) mod 2

(2 1)div
1 (2 1) mod 2

[ ]

(( 1 1) mod 1) ( ( 1))

[ ]

(( 2 1) mod 1) ( ( 2))

[ ]

((2 1) mod 1) ( 2 )

p p p p
p p

p p p p
p p

p p p p
p p

A A

K p p z sp p p p

A A

K p p z sp p p p

A A

K p p z sp p p p

ν

ν

ν

µ

µ

µ

− + −
+ − +

− + −
+ − +

− −
− +



⋅ + − + + − + +

+

+ ⋅ + − + + − + +
+ +

+

⋅ − + + − +

"

(2 1 1)div
1 (2 1 1) mod 2

(2 2 1)div
1 (2 2 1) mod 2

(3 1)div
1 (3 1) mod 2

[ ]

((2 1 1) mod 1) ( (2 1))

[ ]

((2 2 1) mod 1) ( (2 2))

[ ]

p p p p
p p

p p p p
p p

p p p
p p

A A

K p p z sp p p p

A A

K p p z sp p p p

A A

ν

ν

ν

µ

µ

− + −
+ − +

− + −
+ − +

− −
− +


 
 
 
 
 


 
 
 
 
 
 

⋅ + − + + − + +

+

+ ⋅ + − + + − + +
+ +

+

"

((3 1) mod 1) ( 3 )

p

K p p z sp p p pµ

 
 
 
 
 
 
 
 
 
 
 

⋅ − + + − + 
 

+ +"
 



286 N. Assimakis and M. Adam  

(( 1) 1 1)div
1 (( 1) 1 1) mod 2

(( 1) 2 1)div
1 (( 1) 2 1) mod 2

( 1)div
1 (

[ ]

((( 1) 1 1) mod 1) ( (( 1) 1))
[ ]

((( 1) 2 1) mod 1) ( (( 1) 2))

[ ]

p p p p
p p

p p p p
p p

p p p
p

A A

K p p z sp p p p
A A

K p p z sp p p p

A A

ν ν
ν

ν ν
ν

ν ν
ν

ν µ ν

ν µ ν

− − + −
− + − +

− − + −
− + − +

− −
−

⋅ − + − + + − + − +

+

+ ⋅ − + − + + − + − +
+ +

+

"

1) mod 2

( 1 1)div
1 ( 1 1) mod 2

( 2 1)div
1 ( 2 1) mod 2

(( 1) mod 1) ( )

[ ]

(( 1 1) mod 1) ( ( 1))

[ ]

(( 2 1) mod 1) ( (

p
p

p p p p
p p

p p p p
p p

K p p z sp p p p

A A

K p p z sp p p p

A A

K p p z sp p p

ν ν
ν

ν ν
ν

ν µ ν

ν µ ν

ν µ

+

− + −
+ − +

− + −
+ − +

 
 
 
 
 
 
 
 
 
 
 
⋅ − + + − + 
 

⋅ + − + + − + +

+

+ ⋅ + − + + − +

(( 1) 1)div
1 (( 1) 1) mod 2

( 1)
(( 1)div )

1 (( 1) mod ) 2
1

2))

[ ]

((( 1) 1) mod 1) ( ( 1) )

[ ] (( 1) mod 1)

( ).

p p p p
p p

p
p k p p

k p
k

p

A A

K p p z sp p p p

A A K k p

z sp p p k

ν ν
ν

ν
ν

ν

ν µ ν

µ

− + −
+ − +

+
− −

− +
=

 
 
 
 
 
 + 
 + + 
 +
 
⋅ + − + + − + + 
 

= − +

⋅ + − +

∑

"

 

This expression completes the proof of equation (41) with 
the corresponding coefficients in equation (42): 

(( 1)div )
1 (( 1) mod ) 2( ) [ ] (( 1) mod 1).p k p p

k pc k A A K k pν − −
− += − +  

Note that, since k – 1 = p((k – 1)div p) + (k – 1)mod p, 
substituting in equation (41) we take the following 
equivalent expression 

( 1)

1
( 1)

1

( / )

( ) ( )

( ) ( (( 1)div ) ( 1) mod 1)

p

k
p

k

x sp p p sp p p

c k z sp p p k

c k z sp p p p k p k p

ν

ν

ν µ ν µ

µ

µ

+

=
+

=

+ + + +

= + − +

= + − + − + − +

∑

∑

 

with coefficients c(k), k = 1, 2, …, p (v + 1) as in equation 
(42). 

Appendix C 

Proof of equations (43) and (44) 

We denote r = sp + vp + µp and by equation (35) for 
k = 0, 1, …, ϕ – 1 we have successively: 

( 1/ 1) (1,0) ( / ) (1) ( 1)
( 2 / 2) 

(2,1) ( 1/ 1) (2) ( 2)
(2,1) (1,0) ( / ) (2,1) (1) ( 1) (2) ( 2)

( / )
( , 1) ( 1, 2) (2,1) (1,0) ( / )

( , 1) ( 1, 2) (2,1) (1)

x r r A x r r K z r
x r r

A x r r K z r
A A x r r A K z r K z r

x r r
A A A A x r r

A A A K z

ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

+ + = + +
+ +

= + + + +
= + + + +

+ +
= − − −

+ − − −

"

"
"

1 1
1

( 1)
( , 1) ( 1) ( 1) ( ) ( )

( / ) ( ) ( ).i
i

r
A K z r K z r

A x r r A K i z r i
ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

+
=

+ + +
+ − − + − + +

= + +∑

"

 

Thus, we take: 

1 1
1

( / ) ( / ) ( ) ( )i
i

x r r A x r r A K i z r i
ϕ

ϕ ϕϕ ϕ +
=

+ + = + +∑  

for 1 ≤ ϕ ≤ p, and substituting equation (41) in the last 
expression we have: 

1 1
1

( 1)

1
1

1
1

( 1)

1
1

1
1

( 1)

1

( / ) ( / ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ( 1) )

ˆ( ) ( ).

i
i

p

k

i
i

p

k

i
i

p

k

x r r A x r r A K i z r i

A c k z sp p p k

A K i z sp p p i

A c k z sp p p k

A K i z sp p p p v i

c k z sp p p k

ϕ
ϕ ϕ

ν
ϕ

ϕ
ϕ

ν
ϕ

ϕ
ϕ

ν ϕ

ϕ ϕ

µ

µ ν

µ

µ

µ

+
=

+

=

+
=

+

=

+
=

+ +

=

+ + = + +

= + − +

+ + + +

= + − +

+ + − + + +

= + − +

∑

∑

∑

∑

∑

∑

 

This expression completes the proof of equation (43) with 
the corresponding coefficients in equation (44): 

1

(( 1) mod ) 2

( ), 1 ( 1)
ˆ( )

(( 1)mod 1), ( 1) 1 ( 1)k p

A c k k p
c k

A K k p p k p

ϕ

ϕ

ν
ν ϕ ν− +

 ≤ ≤ += 
− + + + ≤ ≤ + +

 

for 1 ≤ ϕ ≤ p, with coefficients c(k), k = 1, 2, …, p(v + 1)  
as in equation (42). 


