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Abstract

In this paper, necessary and sufficient conditions for the existence of

the Hermitian solutions of the nonlinear matrix equation Xs+A∗X−sA =

Q are presented, when A is a nonsingular matrix and s an integer. The

formulas for the computation of these solutions are presented. An al-

gebraic method for the computation of the solutions is proposed; the

method is based on the algebraic solution of the corresponding discrete

time Riccati equation. The exact number of the Hermitian solutions is

also derived. The formula for the computation of the maximal solution

of the matrix equation Xs − A∗X−sA = Q is given as an application

of the formulas derived for solving Xs + A∗X−sA = Q. The results are

verified through simulation experiments.
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1 Introduction

The central issue of this paper is the investigation and the computation of

the Hermitian solutions of the matrix equation

Xs + A∗X−sA = Q, (1)

where the nonsingular matrix A ∈ Mn, Mn denotes the set of all n × n

matrices with complex or real entries, A∗ stands for the conjugate transpose

of A, Q ∈ Mn is a Hermitian positive definite matrix and s is an integer.

The matrix equation of the form (1) arises in many applications in various re-

search areas including control theory, ladder networks, dynamic programming,

stochastic filtering and statistics; see [2, 8, 12] and the references given therein.

In the case that A is nonsingular and s = 1, necessary and sufficient condi-

tions for the existence of a positive definite solution of the matrix equation (1)

have been investigated by many authors [2, 3, 7, 8, 12] and formulas for the

computation of Hermitian and non-Hermitian solutions can be found in [3].

The study only of the positive definite solutions of the nonlinear matrix

equation (1) has been presented in [1] and the more general equation Xs +

A∗X−tA = Q, with A nonsingular, has been considered in [4, 6, 11] (see also

references therein) for s, t positive integers and in [5] when s ≥ 1, 0 < t ≤ 1

and 0 < s ≤ 1, t ≥ 1; there some existence conditions and properties of its

positive definite solutions are obtained.

To describe our results, we introduce some notations and definitions. For

a Hermitian matrix A ∈ Mn, the notation A > 0 (A ≥ 0) means that A

is a positive definite (semidefinite) matrix and for the Hermitian matrices

A,B ∈Mn, the notation A > B (A ≥ B) means that A−B > 0 (A−B ≥ 0).

For A ∈Mn, λi(A) denotes an eigenvalue of A, σ(A) the spectrum of A,

ρ(A) = max{|λi(A)| : λi(A) ∈ σ(A)} (2)

‖A‖ = max{
√
λi(A∗A) : λi(A

∗A) ∈ σ(A∗A)}

denotes the spectral radius and spectral norm of A, respectively, and

r(A) = max{|x∗Ax| : for each vector x ∈ Cn, with x∗x = 1} (3)

denotes the numerical radius of A. It is also known [2, 3, 8, 12] that, when

X > 0 is a solution of X+A∗X−1A = Q, then there exist minimal and maximal
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solutions Xmin and Xmax, respectively, such that 0 < Xmin ≤ X ≤ Xmax

for any solution X > 0. The minimal and maximal solutions are referred as

the extreme solutions. Moreover, the existence of a positive definite solution

depends on the numerical radius of the matrix Q−1/2AQ−1/2, [8, Theorem 5.2].

Note that, setting in (1)

Y = Xs (4)

we obtain

Y + A∗Y −1A = Q. (5)

In this paper, we focus on the computation of the Hermitian solutions of

the matrix equation (1), with A ∈ Mn a nonsingular matrix, Q > 0 and s an

integer with s ≥ 1. In Section 2, specific necessary and sufficient conditions

for the existence of positive definite solutions of (1) are presented and formulas

for computing the Hermitian solutions of (1) are given. In Section 3, an alge-

braic method for computing the Hermitian solutions is proposed; the method

is based on the algebraic solution of the corresponding discrete time Riccati

equation. The number of Hermitian solutions of (1) is also derived (if such

solutions exist). In Section 4, the Hermitian solutions of the matrix equation

Xs − A∗X−sA = Q are discussed and the maximal solution is formulated as

an implementation of the results for solving Xs +A∗X−sA = Q. In Section 5,

simulation results are given to illustrate the efficiency of the proposed results.

2 Existence and formulas of Hermitian solu-

tions of Xs + A∗X−sA = Q

In the first part of this section, in order to present necessary and sufficient

conditions for the existence of Hermitian solutions of the nonlinear matrix

equation (1), we utilize the properties of numerical radius and the following

proposition.

Proposition 2.1. [1, Theorem 2] Let A ∈ Mn be a nonsingular matrix

and Q ∈ Mn with Q > 0. The equation (1) has a positive definite solution

X ∈Mn if and only if for the numerical radius of Q−1/2AQ−1/2 holds

r(Q−1/2AQ−1/2) ≤ 1

2
. (6)
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It is well known that for a Hermitian matrix A holds ‖A‖ = ρ(A) and by

[10, p. 12] and the definitions of radius in (2), (3) we conclude :

r(A) = max{|λmin(A)|, |λmax(A)|} = ρ(A)

Thus, we have the equality:

r(A) = ρ(A) = ‖A‖ (7)

Lemma 2.1. [10, p. 44] Suppose that A ∈Mn is a matrix with nonnegative

real entries. Then r(A) = ρ(HA), where HA = A+A∗

2
denotes the Hermitian

part of A.

Proposition 2.2. Suppose that Q−1/2AQ−1/2 ∈ Mn has nonnegative real

entries and A ∈ Mn is a nonsingular matrix. The equation (1) has at least

one positive definite solution if and only if

‖Q−1/2HAQ
−1/2‖ ≤ 1

2
, (8)

where HA = 1
2
(A+ A∗).

Proof. SinceHA is Hermitian andQ−1/2 > 0, it follows thatQ−1/2HAQ
−1/2

is Hermitian as well, thus from (7) arises:

‖Q−1/2HAQ
−1/2‖ = ρ(Q−1/2HAQ

−1/2) (9)

Moreover, from Lemma 2.1 we derive

r(Q−1/2AQ−1/2) = ρ(HQ−1/2AQ−1/2)

= ρ

(
1

2
(Q−1/2(A+ A∗)Q−1/2)

)
= ρ(Q−1/2HAQ

−1/2).

Combining the last relation, (6) and (9) in Proposition 2.1 we derive (8).

In the second part of this section, the formulas of all Hermitian solutions of

(1) are given by the following theorem, the existence of which is guaranteed

by Proposition 2.1.
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Theorem 2.3. Let A ∈Mn be a nonsingular matrix with r(Q−1/2AQ−1/2) ≤
1
2

and Y ∈Mn be a positive definite solution of the equation (5). For each Y ,

there exist a unitary matrix U ∈ Mn, which diagonalizes Y, and a Hermitian

solution X ∈Mn of the matrix equation (1), such that

(i) if s = 2`+ 1, ` = 0, 1, . . . , then

X = Udiag
(

s
√
λ1(Y ), s

√
λ2(Y ), . . . , s

√
λn(Y )

)
U∗, (10)

(ii) if s = 2`, ` = 1, 2, . . . , then

X = Udiag
(
± s
√
λ1(Y ),± s

√
λ2(Y ), . . . ,± s

√
λn(Y )

)
U∗, (11)

where λi(Y ) ∈ σ(Y ), i = 1, 2, . . . , n, and ± in (11) is denoted all the possible

combinations of the associated algebraic signs.

Proof. Since r(Q−1/2AQ−1/2) ≤ 1
2
, the matrix equation (1) has at least one

positive definite solution by Proposition 2.1; also, the same condition guaran-

tees the existence of at least one positive definite solution of (5) by [8, Theorem

5.2], this solution is denoted by Y ∈ Mn. According to the spectral theorem

for Y , there exists a unitary matrix U ∈Mn such that

Y = UDU∗, (12)

where D = diag(λ1(Y ), . . . , λn(Y )) and λi(Y ) ∈ σ(Y ) are positive real num-

bers. Using the unitarity of U ∈Mn and the formulas of X, Y from (10), (12),

we derive :

Xs + A∗X−sA

=
(
Udiag( s

√
λ1(Y ), . . . , s

√
λn(Y ) )U∗

)s
+ A∗

(
Udiag( s

√
λ1(Y ), . . . , s

√
λn(Y ) )U∗

)−s
A

= U
(
diag( s

√
λ1(Y ), . . . , s

√
λn(Y ) )

)s
U∗

+ A∗ (U∗)−1
(
diag( s

√
λ1(Y ), . . . , s

√
λn(Y ) )

)−s
U−1A

= UDU∗ + A∗ (U∗)−1D−1U−1A

= Y + A∗Y −1A = Q

Hence, X in (10) consists a solution of (1) and due to λi(Y ) > 0 it is a positive

definite solution. Similarly, it can be shown that X in (11) is a Hermitian

solution of (1).
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Remark 2.1. Concluding the section we note that :

(i) Proposition 2.1 guarantees that the existence of Hermitian solutions of

(1) depends on the numerical range of Q−1/2AQ−1/2 and Theorem 2.3

determines the definiteness of these solutions, which depends on s; when

s is an odd number, only positive definite solutions are derived and for-

mulated by (10); when s is an even number, then among the (Hermitian)

solutions there exist negative definite and indefinite solutions, which are

formed by (11). The simple-closed forms, which are proposed in Theorem

2.3 for computing all the Hermitian solutions of (1), generalize the results

in [1, Theorem 2], that are referred only to positive definite solutions.

(ii) The Hermitian solutions in (11) are linear dependent, since these are in

pairs opposite.

(iii) The condition for the existence of solutions of (1), which is related to

the numerical range of Q−1/2AQ−1/2 in Proposition 2.1, is more general

than the formed conditions in [6, Theorem 3.1]

λmax(A
∗A) <

1

4
(λmin(Q))2 (13)

and in [4, Theorem 2.3]

λmin(A∗A) <
1

4
(λmin(Q))2 (14)

and

λmax(A
∗A) ≤ αs−1

1

2
s

√
1

2
(λmin(Q))s+1, (15)

where α1 is the solution of the equation x2s−λmax(Q)xs+λmin(A∗A) = 0,

that lies in the interval
(

0, s

√
1
2
λmin(Q)

)
; when (13) holds or the condi-

tions (14) and (15) are satisfied, then some positive definite solutions are

described in [4, 6] through matrix sets but not through formulas. Notice

that in Example 2 and for s = 3, the associated matrix equation has

Hermitian solutions, although only the inequality in (14) is verified.
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3 Computation of Hermitian solutions of

Xs + A∗X−sA = Q

Let r(Q−1/2AQ−1/2) ≤ 1
2

and Y be a positive definite solution of (5). Work-

ing as in [2]-[3], we are able to derive a Riccati equation, which is equivalent

to the matrix equation (5). In particular, (5) can be written as

Y = Q− A∗Y −1A,

whereby the following equivalent equation arises :

Y = Q− A∗ [Q− A∗Y −1A
]−1

A = Q− A∗A−1
[
(A∗)−1QA−1 − Y −1

]−1
(A∗)−1A

= Q+ A∗A−1
[
Y −1 + (− (A∗)−1QA−1)

]−1 (
A∗A−1

)∗
Substituting in the above equation

F = A∗A−1 and G = − (A∗)−1QA−1 (16)

the related discrete time Riccati equation is derived :

Y = Q+ F
(
Y −1 +G

)−1
F ∗ (17)

Therefore (5) is equivalent to the related discrete time Riccati equation (17),

for the solution of which one may use the algebraic Riccati Equation Solution

Method, [2, 3].

Specifically, from the Riccati equation’s parameters in (16), the following

matrix is formed

Φ+ =

[
A−1A∗ −A−1QA−1

QA−1A∗ A∗A−1 −QA−1QA−1

]
, (18)

which satisfies (Φ+)∗JΦ+ = J, where J =

[
O −I
I O

]
, i.e., Φ+ is a symplec-

tic matrix. All the eigenvalues of Φ+ are non-zero (0 /∈ σ(Φ+)) and it may be

diagonalized in the form

Φ+ = WLW−1,

where L is a 2n× 2n diagonal matrix with diagonal entries the eigenvalues of

Φ+

L =

[
L1 O
O L2

]
(19)
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and W contains the corresponding eigenvectors

W =

[
W11 W12

W21 W22

]
. (20)

In the case that (5) is solvable, then all its solutions Yj, j = 1, 2, . . . , 2n are

given by the formulas:

Yj = W21 (W11)
−1 and Yj = W22 (W12)

−1 , (21)

where the block matrices W11,W12,W21,W22 are defined by the partition of

W in (20) following every different permutation of its column [3, Propositions

1,2]. Among Yj there exist positive definite solutions for some j = 1, 2, . . . , 2n,

therefore Theorem 2.3 can be applied, i.e., there exist unitary matrices Uj, and

D = diag(λ1(Yj), . . . , λn(Yj)) > 0, with λi(Yj) ∈ σ(Yj) such that the solutions

of (1) depend on s; in particular the positive definite solutions are given by

(10) and the Hermitian solutions are formulated by (11).

We remind that Φ+ is a symplectic matrix and its eigenvalues occur in

reciprocal pairs. Therefore, we may arrange them in the diagonal matrix L

in (19) so that L1 contains all the eigenvalues of Φ+ lying outside the unit

circle, and L2 = (L1)
−1 . The above process defines a corresponding (special)

arrangement of eigenvectors of Φ+ in W, which we denote by

Ŵ =

[
Ŵ11 Ŵ12

Ŵ21 Ŵ22

]
.

Using the matrix Ŵ , the unique positive definite solutions of the discrete time

Riccati equation in (17) coincide with the extreme solutions of (5) and these

are formed :

Ymax = Ŵ21(Ŵ11)
−1 > 0 and Ymin = Ŵ22(Ŵ12)

−1 > 0 (22)

Moreover, it is well known [2, 3] that, when A ∈ Mn is nonsingular,

the existence of a finite number of positive definite solutions of the matrix

equation (5) depends on the eigenvalues of the matrix Φ+. In the following,

V (λi(Φ
+)) denotes the eigenspace corresponding to eigenvalue λi(Φ

+) and

dim(V (λi(Φ
+))) denotes its dimension.
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Theorem 3.1. Let A ∈ Mn be a nonsingular matrix, Φ+ be the matrix

in (18) and assume that the matrix equation Xs + A∗X−sA = Q has at least

one positive definite solution. If dim(V (λi(Φ
+))) = 1 for every eigenvalue

λi(Φ
+), i = 1, 2, . . . , 2n, with |λi(Φ+)| 6= 1, then there exists a finite number

of Hermitian solutions (h.s.) of (1). In particular, when s is an even number,

then the number of solutions is equal to

#h.s. = 2n
m∏
j=1

(nj + 1) (23)

and when s is an odd number, then the number of positive definite solutions

(h.p.d.s.) is given by

#h.p.d.s. =
m∏
j=1

(nj + 1). (24)

If A,Q are real matrices, then among the h.s. and h.p.d.s. there exist real

symmetric solutions (r.s.s.) (or real positive symmetric solutions (r.p.s.s.)) of

(1) with

# r.s.s. = 2n
p+q∏
k=1

(nk + 1); for s = 2`, ` = 1, 2, . . . (25)

# r.p.s.s. =

p+q∏
k=1

(nk + 1); for s = 2`+ 1, ` = 0, 1, . . . (26)

where m is the number of the distinct eigenvalues of Φ+, that lie outside the

unit circle, with algebraic multiplicity nj, j = 1, 2, . . . ,m, p is the number of

real distinct eigenvalues of Φ+ lying outside the unit circle, q is the number

of complex conjugate pairs of eigenvalues lying outside the unit circle, with

algebraic multiplicity nk, k = 1, 2, . . . , p+ q.

Proof. Assume that X ∈Mn is a positive definite solution of (1). Accord-

ing to Theorem 2.3, every positive definite solution X ∈ Mn of (1) is related

to a positive definite solution Y ∈ Mn of (5) by (4). Hence, the unique sym-

plectic matrix Φ+ in (18) corresponds to the two matrix equations (5) and (1).

Thus, when s = 2` + 1, for ` = 0, 1, . . . , the total number of positive definite

(real positive symmetric) solutions of (1) is the same as in [1, 3] and is given

by (24), (26), respectively, while when s = 2`, ` = 1, 2, . . . , the total number of
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Hermitian (real symmetric) solutions is given by (23), (25), respectively, since

the h.s. and r.s.s. depend on all the permutations of the sign of sth root of

eigenvalues of Y , (see formula of X in (11)).

Remark 3.1.

(i) It is clear that for s = 1, the number of solutions in (24) and (26) is the

same as in [3, Theorem 9].

(ii) We remind that the Hermitian solutions are linear dependent according

to statement (ii) in Remark 2.1; consequently, when s is an even number,

the number of linear independent Hermitian solutions of (1) is equal to

#h.s. = 2n−1

m∏
j=1

(nj + 1), (27)

and the number of linear independent real symmetric solutions of (1) is

equal to

# r.s.s. = 2n−1

p+q∏
k=1

(nk + 1). (28)

4 Maximal solution of Xs − A∗X−sA = Q

It is well known [3] that, when A ∈ Mn is nonsingular and Q > 0, there

always exist the extreme solutions of equation X − A∗X−1A = Q, a unique

positive definite solution, which is the maximal, and a unique negative definite

solution, which is the minimal; in this section the Hermitian solutions of the

matrix equation

Xs − A∗X−sA = Q (29)

are discussed. It will be proved that these solutions are related to the maximal

solution of an equation of the type of (5). The matrix equation (29) using the
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Matrix Inversion Lemma4 can be written:

Xs = Q+ A∗X−sA = Q+ A∗ (Xs)−1A = Q+ A∗ (Q+ A∗X−sA
)−1

A

= Q+ A∗
[
Q−1 −Q−1A∗ (Xs + AQ−1A∗)−1

AQ−1
]
A

= Q+ A∗Q−1A− A∗Q−1A∗ (Xs + AQ−1A∗)−1
AQ−1A

Setting in the above equality

B = AQ−1A (30)

C = Q+ A∗Q−1A+ AQ−1A∗ (31)

Y = Xs + AQ−1A∗ (32)

we have :

Y +B∗Y −1B = C (33)

Remind that the equation in (33) is of the type of (5); C in (31) is a positive def-

inite matrix as sum of positive definite matrices (noticing thatA∗Q−1A,AQ−1A∗

are positive definite matrices), and B in (30) is a nonsingular matrix due to

detB = (detA)2(detQ)−1 6= 0.

Thus, it becomes obvious that the solutions of (29) can be derived through

the solutions of (33), whose existence is related to the numerical radius of

C−1/2BC−1/2 [2, 3, 8].

Moreover, rewritting (32) as

Xs = Y − AQ−1A∗, (34)

it is evident that the solving of (29) is related to the existence of sth root of

the matrix Y − AQ−1A∗ in (34), the existence of which is guaranteed by the

following lemma.

Lemma 4.1. [9, Theorem 7.2.6] Let A ∈ Mn be a positive semidefinite

matrix and let ν ≥ 1 be a given integer. Then there exists a unique positive

semidefinite matrix B such that Bν = A.

In the following theorem conditions and formulas for the solutions of (29)

are presented.

4We remind that for the matrices K,L,M,N ∈ Mn with K,M nonsingular the Matrix

Inversion Lemma is given: (K + LMN)−1 = K−1 −K−1L(M−1 + NK−1L)−1NK−1
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Theorem 4.1. Let B ∈Mn be the nonsingular matrix in (30), C ∈Mn

be the positive matrix in (31), with r(C−1/2BC−1/2) ≤ 1
2
. Then,

(i) there exists a positive definite solution Y ∈Mn of (33).

(ii) If Ymax ∈Mn is a maximal solution of (33) with

λmin(Ymax) > λmax(AQ
−1A∗),

then the associated Ψ ≡ Ymax − AQ−1A∗ by (34) is a positive definite

matrix and the unique maximal solution Xmax ∈ Mn of the matrix

equation (29) is formed

Xmax = Udiag
(

s
√
λ1(Ψ), s

√
λ2(Ψ), . . . , s

√
λn(Ψ)

)
U∗, (35)

where λi(Ψ) ∈ σ(Ψ), i = 1, 2, . . . , n, and U ∈ Mn is a unitary matrix, which

diagonalizes Ψ.

Additionally, if s = 2`, ` = 1, 2, . . . , then there exist 2n Hermitian solutions

X ∈ Mn of (29) including the maximal one, which are derived by (35) using

2n combinations of the signed s
√
λi(Ψ), with λi(Ψ) ∈ σ(Ψ).

Proof. (i) By the assumption of the numerical radius of C−1/2BC−1/2 and

Proposition 2.1 for s = 1, it is obvious that the matrix equation (33) has at

least one positive definite solution.

(ii) Since Ymax is a Hermitian matrix, it is clear that Ψ is one. Also,

Ymax, AQ
−1A∗ are positive definite matrices, thus its eigenvalues are indexed

in increasing order as

0 < λmin(Ymax) ≤ · · · ≤ λmax(Ymax),

0 < λmin(AQ−1A∗) ≤ · · · ≤ λmax(AQ
−1A∗),

respectively. According to Weyl’s Theorem [9, Theorem 4.3.1] for the form of

Ψ ≡ Ymax − AQ−1A∗ the following inequality holds:

λmin(Ymax)− λmax(AQ−1A∗) ≤ λmin(Ymax − AQ−1A∗) ≤ λmin(Ymax)− λmin(AQ−1A∗)

Combining the assumption λmin(Ymax) > λmax(AQ
−1A∗) with the left part of

the above inequality we have

λmin(Ψ) = λmin(Ymax − AQ−1A∗) ≥ λmin(Ymax)− λmax(AQ−1A∗) > 0
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from which arises Ψ > 0. Since the assumption of Lemma 4.1 is satisfied

by Ψ, there exists a unique positive definite solution of Xs = Ψ, which is

denoted Xmax ∈ Mn. Using the unitary matrix U ∈ Mn, which arises from

the diagonalization of Ψ, and the formula of Xmax in (35) the matrix equation

Xs
max = Ψ directly is verified; more specifically Xmax is a maximal solution of

(29) due to the uniqueness of maximal Ymax of (33).

It is evident that, when s = 2`, ` = 1, 2, . . . , using all the possible com-

binations of the signed s
√
λi(Ψ) in the diagonal matrix of the formula of the

solutions in (35), all the Hermitian solutions of (29) derived, the total number

of which is equal to 2n.

Remark 4.1.

(i) Notice that the solution of (29) does not depend only on the solution of (33),

but it is based on the definiteness of the matrix Y − AQ−1A∗ in (34) as well;

thus searching Hermitian or positive definite solutions of (29) it is required

Ψ > 0, where Ψ is given as in Theorem 4.1.

(ii) For the computation of Ymax in (ii) of Theorem 4.1 the associated formula in

(22) can be used.

5 Simulation results

Simulation results are given to illustrate the efficiency of the proposed

method. The proposed method computes the Hermitian solutions as verified

through the following simulation examples, using Matlab 6.5.

Example 5.1. Let the matrices

A =

[
−0.2 0.4

0.3 0.7

]
, Q =

[
1.2 −0.4

−0.4 2.3

]

in the equation Xs + A∗X−sA = Q, s = 2, 3. Obviously, A is a nonsingu-

lar matrix, with spectrum σ(A) = {λ1(A) = −0.3179, λ2(A) = 0.8179},
and Q > 0, with σ(Q) = {1.0699, 2.4301}. Since r(Q−1/2AQ−1/2) = 0.4691,

Proposition 2.1 guarantees the existence of positive definite solutions of (1)
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and Theorem 2.3 determines the definiteness of these solutions from (10)-(11).

The spectrum of matrix Φ+ in (18) is

σ(Φ+) = {λ1(Φ+) = −19.7683, λ2(Φ
+) = −2.0634, λ3(Φ

+) = −0.0506,

λ4(Φ
+) = −0.4846},

with∣∣λ1(Φ+)
∣∣ = 19.7683,

∣∣λ2(Φ+)
∣∣ = 2.0634,

∣∣λ3(Φ+)
∣∣ = 0.0506,

∣∣λ4(Φ+)
∣∣ = 0.4846,

thus Φ+ has m = p = 2 real eigenvalues outside the unit circle, the algebraic

multiplicity of which is n1 = n2 = 1, and q = 0 (all eigenvalues are real

numbers). According to Theorem 3.1 the Riccati Equation Solution Method

can be applied, because its assumptions are verified; the associated number of

Hermitian solutions coincides to the real symmetric one and for s = 2, s = 3

the solutions are computed by (23), (24), respectively, which is equal to

#h.s. ≡ r.s.s. = 22

m∏
j=1

(nj+1) = 16, and #h.p.d.s. ≡ r.p.s.s. =
m∏
j=1

(nj+1) = 4.

The corresponding eigenvectors of Φ+ are the columns of the matrix

W =


0.5686 −0.3944 0.9655 −0.4954

−0.1045 −0.5421 −0.2506 −0.7263

0.6915 −0.1982 0.0660 −0.1333

−0.4331 −0.7150 −0.0257 −0.4574

 .
The positive definite solutions Yj of (5) are computed by (21);

• when s = 2, according to Theorem 2.3 for each Yj the corresponding Hermitian

solutions of (1) are derived by (11) as follows:

Y1 =

[
0.0985 0.1163

0.1163 0.5504

]
,

X1 =

[
0.2927 0.1134

0.1134 0.7332

]
, X2 =

[
−0.2084 0.2347

0.2347 0.7038

]
,

X3 =

[
−0.2927 −0.1134

−0.1134 −0.7332

]
, X4 =

[
0.2084 −0.2347

−0.2347 −0.7038

]
,
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Y2 =

[
0.1373 0.2657

0.2657 1.1258

]
,

X5 =

[
0.3147 0.1957

0.1957 1.0428

]
, X6 =

[
−0.1845 0.3213

0.3213 1.0112

]
,

X7 =

[
−0.3147 −0.1957

−0.1957 −1.0428

]
, X8 =

[
0.1845 −0.3213

−0.3213 −1.0112

]
,

Y3 =

[
1.1106 −0.5740

−0.5740 1.0213

]
,

X9 =

[
1.0133 −0.2897

−0.2897 0.9682

]
, X10 =

[
−0.3674 0.9877

0.9877 −0.2137

]
,

X11 =

[
−1.0133 0.2897

0.2897 −0.9682

]
, X12 =

[
0.3674 −0.9877

−0.9877 0.2137

]
,

Y4 =

[
1.1319 −0.4580

−0.4580 1.6523

]
,

X13 =

[
1.0454 −0.1978

−0.1978 1.2701

]
, X14 =

[
−0.3443 −1.0067

−1.0067 0.7993

]
,

X15 =

[
−1.0454 0.1978

0.1978 −1.2701

]
, X16 =

[
0.3443 1.0067

1.0067 −0.7993

]
.

Also, we observe that the Hermitian solutions are in pairs opposite, thus it is

verified the statement (ii) in Remark 2.1 and the number of linear independent

solutions is given by (27)

#h.s. ≡ r.s.s. = 2
m∏
j=1

(nj + 1) = 8,

and the associated solutions are X1, X2, X5, X6, X9, X10, X13, X14.

• when s = 3, according to Theorem 2.3 for each Yj the corresponding positive

definite solutions of (1) are derived by (10) as follows:

Y1 =

[
0.0985 0.1163

0.1163 0.5504

]
, X1 = Xmin =

[
0.4361 0.0962

0.0962 0.8100

]
,

Y2 =

[
0.1373 0.2657

0.2657 1.1258

]
, X2 =

[
0.4516 0.1533

0.1533 1.0219

]
,
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Y3 =

[
1.1106 −0.5740

−0.5740 1.0213

]
, X3 =

[
0.9993 −0.1950

−0.1950 0.9689

]
,

Y4 =

[
1.1319 −0.4580

−0.4580 1.6523

]
, X4 = Xmax =

[
1.0262 −0.1260

−0.1260 1.1693

]
,

It is also verified that: 0 < Xmin < Xmax.

Example 5.2. Consider s = 3 in equation Xs + A∗X−sA = Q with

A =

 0.32 0.13 0.12

0.20 0.34 0.12

0.11 0.17 0.10

 , Q =

 1.20 −0.30 0.10

−0.30 2.10 0.20

0.10 0.20 0.65

 .
In this example, A is a nonsingular matrix with

σ(A) = {λ1(A) = 0.5660, λ2(A) = 0.1602, λ3(A) = 0.0337},

Q is a positive definite matrix with

σ(Q) = {λmin(Q) = 0.5882, λ2(Q) = 1.1538, λmax(Q) = 2.2080},

and the spectrum of A∗A is

σ(A∗A) = {λmin(A∗A) = 0.0010, λ2(A
∗A) = 0.0297, λmax(A

∗A) = 0.3241}.

From the previous values of the spectrum it is obvious that

λmax(A
∗A) >

1

4
(λmin(Q))2 ,

i.e., the inequality in (13) is not satisfied, hence Theorem 3.1 in [6] can not be

applied.

Also, the inequality in (14) is verified; the real root of equation x6−λmax(Q)x3+

λmin(A∗A) = 0 is α1 = 0.0761, for which holds α1 ∈
(

0, 3

√
1
2
λmin(Q)

)
and

yields

λmax(A
∗A) >

α2
1

2
3

√
1

2
(λmin(Q))4.

Thus the inequality in (15) is not verified, which means that neither Theorem

2.3 in [4] can be applied.
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Moreover, the entries of Q−1/2AQ−1/2 are nonnegative real numbers

Q−1/2AQ−1/2 =

 0.2886 0.1118 0.1087

0.1606 0.1724 0.0758

0.0965 0.1226 0.1124

 ,
with ‖Q−1/2HAQ

−1/2‖ = 0.4392, i.e., the inequality (8) is satisfied, thus,

Proposition 2.2 guarantees the existence of positive definite solutions. Since

the spectrum of Φ+ is σ(Φ+) = {λ1,2(Φ+) = −204.227 ± 57.086i, λ3(Φ
+) =

2.835, λ4(Φ
+) = −0.352, λ5,6(Φ

+) = −0.0045 ± 0.0013i}, with |λ1,2(Φ+)| =

212.0557, |λ3(Φ+)| = 2.8351, |λ4(Φ+)| = 0.3527, |λ5,6(Φ+)| = 0.0047, Φ+

has p = 1 real eigenvalue and q = 1 pair of complex eigenvalues (m = 3

in total) outside in unit circle, the algebraic multiplicity of which is equal to

1. According to Theorem 3.1 the Riccati Equation Solution Method can be

applied, because its hypotheses are verified and the number of Hermitian so-

lutions is computed by (24) and the number of real symmetric solutions is

computed by (26):

#h.p.d.s. =
m∏
j=1

(nj + 1) = 8, # r.p.s.s. =

p+q∏
k=1

(nk + 1) = 4

The positive definite solutions are computed by (10) and given in the following:

X1 = Xmin =

 0.4388 0.1899 0.1149

0.1899 0.4160 0.1630

0.1149 0.1630 0.2083

 , (minimal solution)

X2 =

 0.5602 0.3133 0.1862

0.3133 0.5414 0.2355

0.1862 0.2355 0.2502

 ,

X3 =

 0.6373 0.1286− 0.0644i −0.1748 + 0.0867i

0.1286 + 0.0644i 0.4645 0.2128− 0.1185i

−0.1748− 0.0867i 0.2128 + 0.1185i 0.6880

 ,

X4 =

 0.6373 0.1286 + 0.0644i −0.1748− 0.0867i

0.1286− 0.0644i 0.4645 0.2128 + 0.1185i

−0.1748 + 0.0867i 0.2128− 0.1185i 0.6880

 ,

X5 =

 0.7760 0.2570− 0.0653i −0.1102 + 0.0929i

0.2570 + 0.0653i 0.5835 0.2727− 0.1124i

−0.1102− 0.0929i 0.2727 + 0.1124i 0.7186

 ,
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X6 =

 0.7760 0.2570 + 0.0653i −0.1102− 0.0929i

0.2570− 0.0653i 0.5835 0.2727 + 0.1124i

−0.1102 + 0.0929i 0.2727− 0.1124i 0.7186

 ,

X7 =

 0.8241 −0.2260 −0.0688

−0.2260 1.1677 −0.0135

−0.0688 −0.0135 0.8053

 ,

X8 = Xmax =

 0.9947 −0.1149 0.0131

−0.1149 1.2415 0.0398

0.0131 0.0398 0.8447

 , (maximal solution)

The real symmetric solutions are X1, X2, X7, X8 and for every positive definite

solution X, it is verified that 0 < Xmin ≤ X ≤ Xmax.

Example 5.3. Let the matrices A,Q in Example 5.1 and the matrix

equation Xs−A∗X−sA = Q, for s = 2, 3. By (30), (31) the matrices B,C are

computed and since the entries of the matrix

C−1/2BC−1/2 =

[
0.0580 0.0457

0.0331 0.1354

]

are nonnegative real numbers, according to Proposition 2.2

r(C−1/2BC−1/2) = ‖C−1/2HBC
−1/2‖ = 0.1521,

where HB is the Hermitian part of B. Thus, according to (i) of Theorem 4.1

the existence of positive definite solutions of (33) is quaranteed, which are

computed by (21). Also, the spectrum of matrix Φ+ in (18) is

σ(Φ+) = {λ1(Φ+) = −570.3769, λ2(Φ
+) = −41.4867, λ3(Φ

+) = −0.0241,

λ4(Φ
+) = −0.0018},

with∣∣λ1(Φ+)
∣∣ = 570.3769,

∣∣λ2(Φ+)
∣∣ = 41.4867,

∣∣λ3(Φ+)
∣∣ = 0.0241,

∣∣λ4(Φ+)
∣∣ = 0.0018,

thus Φ+ has m = p = 2 real eigenvalues outside the unit circle, the algebraic

multiplicity of which is n1 = n2 = 1, and q = 0 (all eigenvalues are real

numbers). Since the assumptions of Theorem 3.1 are verified, the Riccati
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Equation Solution Method can be applied for the computation of all positive

definite solutions Yj of equation Y + B∗Y −1B = C; by (24) the associated

number of Yj is equal to

#h.p.d.s. ≡ r.p.s.s. =
m∏
j=1

(nj + 1) = 4

and by (21) the positive definite solutions Yj are given in the following:

Y1 =

[
0.0056 0.0127

0.0127 0.0589

]
, Y2 =

[
0.1677 0.6179

0.6179 2.3193

]
,

Y3 =

[
1.2599 −0.7603

−0.7603 0.5353

]
, Y4 =

[
1.3386 −0.3144

−0.3144 3.0618

]
Also, Y4 = Ymax is the only positive definite solution from the above, which

yields

Ψ4 ≡ Ymax − AQ−1A∗ =

[
1.2540 −0.3875

−0.3875 2.6914

]
> 0

due to σ(Ψ4) = {1.1561, 2.7892}.

• For s = 2, according to (ii) of Theorem 4.1 the maximal solution of

X2 − A∗X−2A = Q is computed by (35) and is equal to

Xmax =

[
1.1109 −0.1412

−0.1412 1.6345

]
.

There exist others three different Hermitian solutions, which are given in the

following:

X1 =

[
−0.9108 −0.6515

−0.6515 1.5057

]
, X2 =

[
−1.1109 0.1412

0.1412 −1.6345

]
,

X3 =

[
0.9108 0.6515

0.6515 −1.5057

]
• For s = 3, the positive definite solution of X3 −A∗X−3A = Q is given in the

following, which is computed by (35):

X =

[
1.0710 −0.0850

−0.0850 1.3862

]
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