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Abstract: In this article, new iterative algorithms for solving the discrete Riccati and Lyapunov equations
are derived in the case where the transition matrix is diagonalizable with real eigenvalues. It is shown that
the proposed iterative algorithms are faster than the classical ones, even for a small number of iterations.
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1 Introduction

The discrete time Riccati equation arises by implementing the discrete time Kalman filter, which is the most
famous estimation algorithm associated with time invariant models of the form [1]:

( ) ( ) ( )+ = +x k Fx k w k1 , (1)

( ) ( ) ( )= +z k Hx k v k , (2)

for ≥k 0 (discrete time).
In these models, ( )x k is the n dimensional state and ( )z k is them dimensional measurement. The model

describes the relation between two successive states through the ×n n transition matrix F and the relation
between the state and the measurement through the ×m n output matrix H . In addition, ( )w k and ( )v k are
the state and measurement noises, which are zero mean Gaussian processes with known covariancesQ and
R, respectively. It is worth to note thatQ and R are symmetric and nonnegative definite of dimensions ×n n
and ×m m, respectively. So, the model parameters F H Q R, , and are time invariant (constant) and known.

Kalman filter produces iteratively the state prediction with the associated prediction error covariance as
well as the state estimation with the associated estimation error covariance. The equations of the discrete
time Kalman filter result in the discrete time Riccati equation:

( ) ( ) ( ) [ ( ) ] ( )+ | = + | − − | − | − + | −
−P k k Q FP k k F FP k k H HP k k H R HP k k F1 1 1 1 1 .T T T T1 (3)

Riccati equation relates two successive values of the prediction error covariance ( )| −P k k 1 , which
is symmetric and nonnegative definite of dimensions ×n n.

It is well known [1] that if the system is asymptotically stable, i.e., all eigenvalues of the transition
matrix F lie inside the unit circle, then for any nonnegative symmetric initial condition ( )= | −P P 0 10 , there
exists a unique steady state or limiting solution P of the Riccati equation:
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( )= | −

→∞

P P k klim 1 .
k (4)

This limiting solution satisfies the algebraic Riccati equation (or steady-state Riccati equation):

[ ]= + − +
−P Q R HPFFPF FPH HPH .T T T T1 (5)

It is worth to note that inverse of the matrix ( )| − +k k H RHP 1 T in (3) exists when R is positive definite,
which means that no measurement is accurate, or when the initial condition P0 is positive definite, which
seems not to be a problem, since we are able to choose a convenient initial condition.

The nonsingularity of Q and R ensures the nonsingularity of ( )| −P k k 1 , which then it is positive
definite. In this (reasonable and general) case, by using the matrix inversion lemma,¹ the Riccati equation
(3) can be transformed to the transformed Riccati equation:

( ) [ ( ) ]+ | = + | − +
− −P k k Q F P k k B F1 1 ,T1 1 (6)

where

=
−B H R H.T 1 (7)

The limiting solution P of the transformed Riccati equation (6) satisfies the transformed algebraic
Riccati equation:

[ ]= + +
− −P Q F P B F .T1 1 (8)

In the infinite measurement noise case, the discrete time Lyapunov equation is derived:

( ) ( )+ | = + | −P k k Q FP k k F1 1 ,T (9)

with a limiting solution P, that satisfies the algebraic Lyapunov equation:

= +P Q FPF .T (10)

The importance of the Riccati and Lyapunov equations is undoubtable: the Riccati equation plays
a very important role in various problems of stochastic filtering, statistics, ladder networks, and dynamic
programming [1,2], and has many applications in the process of obtaining optimal control and determining
system stability [3,4]; Lyapunov equations play a very important role in the stability theory of discrete
systems [1,5].

Significant bibliography exists concerning iterative as well as noniterative solutions of the Riccati and
Lyapunov equations [1,2,6–13]. The existence of the unique solution of the Riccati equation and of the
Lyapunov equation requires the knowledge of the eigenvalues of the transition matrix. The classical
iterative solution of the Riccati equation implements the iterative Riccati equation (3) or the iterative
transformed Riccati equation (6) till the steady-state solution is reached. Similarly, the classical iterative
solution of the Lyapunov equation implements the iterative Lyapunov equation (7) till the steady-state
solution is reached.

The aim of this article is to study the optimal algorithm for solving the discrete Riccati and Lyapunov
equations, in the case where the transition matrix is diagonalizable with real eigenvalues. The required
condition appears in various application areas, see the eigenvalues of the transition matrix in the radar
tracking system [14], in the eye movement prediction model [15], and in the mobile position tracking model
[16,17]; the state and parameter estimation has been derived using a transition matrix, which is a diagonal
itself [18]. The novelty of this article concerns the exploitation of the knowledge of the eigenvalues and
eigenvectors of the transition matrix, which leads to the development of the new algorithms for iterative
solving of the Riccati and Lyapunov equations, which are superior to classical algorithms, since the
proposed algorithms are in general faster than the classical ones.



1 Let A Cand be ×n n and ×m m invertible matrices and B Dand be matrices of size ×n m and ×m n, respectively. Then,
the matrix inversion lemma is formulated:

[ ] [ ]+ = − +
− − − − − − −A BCD A A B C DA B DA .1 1 1 1 1 1 1
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This article is organized as follows: In Section 2, new iterative solutions of the Riccati and Lyapunov
equations are derived by the eigenvalues and eigenvectors of the transition matrix. In Section 3,
the proposed algorithms are compared to the classical ones with respect to their computational burdens.
Section 4 summarizes the conclusions.

2 New iterative solution algorithms for Riccati equation and
Lyapunov equation

Recall that the model parameters F H Q R, , and are time invariant (constant) and known. The Riccati
equation and the Lyapunov equation have an unique symmetric nonnegative definite solution P if and
only if | | < = …λ for all i n1 1, ,i , where = …λ i n, 1i are the eigenvalues of F .

In the following, we consider that the ×n n transition matrix F has real eigenvalues with the algebraic
multiplicity of every eigenvalue identified by its geometric; thus, the associated eigenvectors are linearly
independent vectors.

Consider the diagonalization formula of the transition matrix F given by

=
−F WLW ,1 (11)

where L is the ×n n diagonal matrix containing the eigenvalues of matrix F and the ×n n matrix;
W consists of columns of the associated linearly independent eigenvectors of F.

It is worth noting that equation (11) is essential for the derivation of the new iterative algorithms for
solving the discrete Riccati and Lyapunov equations, since they use the eigenvalues and eigenvectors of
the transition matrix instead of the transition matrix itself, reducing the computations due to the similarity
of the matrices F Land .

Concerning the Riccati equation, by multiplying the left-hand side of equation (3) by −W 1 and the right-
hand side by −W T and using (11) and the property of the diagonal matrix L, =L LT , as well as the equalities

= =
− −W W W W I,T T T T where I denotes the identity matrix, we derive

( ) ( ) ( )+ | = + | − − | −
− − − − − − − −W P k k W W QW LW P k k W L LW P k k W W H1 1 1T T T T T T1 1 1 1

[ ( ) ]| − +
− − −HWW P k k W W H R1 T T T1 1

( )| −
− −HWW P k k W L1 .T1

Setting in the latter equality

( ) ( )| − = | −
− −P k k W P k k W~ 1 1 ,T1 (12)

=
− −Q W QW~ ,T1 (13)

=H HW~ (14)

arises the modified Riccati equation.

( ) ( ) ( ) [ ( ) ] ( )+ | = + | − − | − | − + | −
−P k k Q LP k k L LP k k H HP k k H R HP k k L~ 1 ~ ~ 1 ~ 1 ~ ~ ~ 1 ~ ~ ~ 1 .T T 1 (15)

It is important to note that the Riccati equation (3) with parameters F H Q R, , and has been modified

to equation (15), which is a Riccati equation with well-defined parameters L H Q R, ~, ~ and .
Then, the limiting solution of (15) is

( ) ( )= + | = | −

→∞ →∞

P P k k P k k~ lim ~ 1 lim ~ 1
k k

(16)

and satisfies the modified algebraic Riccati equation:

[ ]= + − +
−P Q LPL LPH HPH R HPL~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .T T 1 (17)
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It is clear that the solution of the Riccati equation (3) can be computed by the solution of the modified
Riccati Equation (15) due to (16) and (12):

=P WPW~ .T (18)

Concerning the transformed Riccati equation, by multiplying the left-hand side of equation (6) by −W 1

and the right-hand side by −W T , using (11) and the property of the diagonal matrix L, =L LT , as well as the
equalities = =

− −W W W W I,T T T T we derive

( ) [ ( ) ]

[ ( ) ]

+ | = + | − +

= + | − +

− − − − − − − − −

− − − −

W P k k W W QW LW P k k B W L W W
W QW L W P k k W W BW L

1 1
1 .

T T T T T T

T T T

1 1 1 1 1

1 1 1

Setting in the latter equality

( ) ( )| − = | −
− −P k k W P k k W~ 1 1 ,T1 (19)

=
− −Q W QW~ ,T1

=B W BW~ T (20)

Q arises the modified transformed Riccati equation:

( ) [ ( ) ]+ | = + | − +
−

−P k k Q L P k k B L~ 1 ~ ~ 1 ~ .1 1 (21)

It is important to note that the transformed Riccati equation (6)with parameters F H Q R, , and has been
modified to Equation (21), which is a transformed Riccati equation with well-defined parameters L,
H Q R~, ~ and .

Then, using (16)
( ) ( )| |= − = +

→∞ →∞

P P k k P k k~ lim ~ 1 lim ~ 1
k k

arises the limiting solution of (21), which satisfies the algebraic Riccati equation:

[ ]= + +
−

−P Q L P B L~ ~ ~ ~ .1 1 (22)

It is clear that the solution of the transformed Riccati equation (6) can be computed by the solution
of the Riccati equation (22) due to (16) and (19):

=P WPW~ .T (23)

Concerning the Lyapunov equation, by multiplying the left-hand side of (9) by −W 1 and the right-hand
side by −W T , using (11) and the property of the diagonal matrix L, =L LT , as well as the equalities

= =
− −W W W W I,T T T T we derive

( ) ( )+ | = + | −
− − − − −P k k W W QW LW P k k W L1 1 .T T T1 1

Setting in the latter equality

( ) ( )| − = | −
− −P k k W P k k W~ 1 1 ,T1 (24)

=
− −Q W QW~ T1

arises

( ) ( )+ | = + | −P k k Q LP k k L~ 1 ~ ~ 1 . (25)

It is important to note that the Lyapunov equation (9) with parameters F Qand has been modified

to equation (25), which is a Lyapunov equation with well-defined parameters L Qand ~.
Then, using (16)

( ) ( )| |= − = +

→∞ →∞

P P k k P k k~ lim ~ 1 lim ~ 1
k k
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arises the limiting solution of (25), which satisfies the modified algebraic Lyapunov equation:

= +P Q LPL~ ~ ~ . (26)

It is clear that the solution of the Lyapunov equation (9) can be computed by the solution of the
modified Lyapunov equation (25) due to (16) and (24):

=P WPW~ .T (27)

Table 1 summarizes the classical and the derived iterative algorithms for solving the Riccati and
Lyapunov equations.

Table 1: Riccati and Lyapunov equations iterative solution algorithms

Equation Algorithm

Riccati equation Classical input: F H Q R, , ,
initialization: =L Feigenvalues of
iteration

( ) ( ) ( ) [ ( ) ] ( )| | | | |+ = + +P k k Q FP k k F FP k k H HP k k H R HP k k F1 − 1 − − 1 − 1 − 1T T T T−1

convergence: ( )|=

→

P P k klim − 1
k ∞

output: P
Proposed input: F H Q R, , ,

initialization: = = = =L eigenvalues of F W eigenvectors of F Q W QW H HW, , ̃ , ̃T−1 −

iteration

( ) ( ) ( ) [ ( ) ] ( )+ | = + | | | + |P k k Q LP k k L LP k k H HP k k H R HP k k L̃ 1 ̃ ̃ − 1 − ̃ − 1 ̃ ̃ ̃ − 1 ̃ ̃ ̃ − 1T T −1

convergence: ( )|=

→

P P k k̃ lim ̃ − 1
k ∞

finalization: =P WPW̃ T

output: P
Transformed
Riccati equation

Classical input: F H Q R, , ,
initialization: = =L eigenvalues of F B H R H, T −1

iteration

( ) [ ( ) ]+ | = + | +P k k Q F P k k B F1 − 1 T−1 −1

convergence: ( )|=

→

P P k klim − 1
k ∞

output: P
Proposed input: F H Q R, , ,

initialization:

= = = = =L eigenvalues of F W eigenvectors of F B H R H Q W QW B W BW, , , ̃ , ̃T T T−1 −1 −

iteration

( ) [ ( ) ]+ | = + | +P k k Q L P k k B L̃ 1 ̃ ̃ − 1 ̃−1 −1

convergence: ( )|=

→

P P k k̃ lim ̃ − 1
k ∞

finalization: =P WPW̃ T

output: P
Lyapunov
equation

Classical input: F Q,
initialization: =L eigenvalues of F
iteration

( ) ( )|+ | = +P k k Q FP k k F1 − 1 T

convergence: ( )|=

→

P P k klim − 1
k ∞

output: P
Proposed input: F Q,

initialization: = = =L eigenvalues of F W eigenvectors of F Q W QW, , ̃ T−1 −

iteration

( ) ( )+ | = + |P k k Q LP k k L̃ 1 ̃ ̃ − 1
convergence: ( )|=

→

P P k k̃ lim ̃ − 1
k ∞

finalization: =P WPW̃ T

output: P
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3 Comparison of classical and proposed algorithms

It is established that the proposed iterative algorithms for solving the Riccati and Lyapunov equations have
been derived by the classical iterative algorithms. Thus, the classical and the derived algorithms are
equivalent with respect to their behavior since they calculate theoretically the same solutions executing
the same number of iterations s.

We are going to compare the classical and the derived algorithms with respect to their calculation
burdens. Scalar operations are involved in matrix manipulation operations, which are needed for the
implementation of the algorithms. Table 2 summarizes the calculation burdens of needed matrix opera-
tions. The computation of the eigenvalues is achieved by solving the characteristic equation using the
Newton-Raphson method, Laguerre’s method, Regula-Falsi method or Bernoulli’s method, because each
method requires different computations for solving the characteristic equation. In the following, we con-
sider that all the algorithms apply the same method; thus the computation of the eigenvalues has the same
calculation burden, which is denoted as CBL. The eigenvectors computation is achieved using Gauss

elimination and backward substitutions. In fact, Gauss elimination requires ( )+ −n n n4 9 71
6

3 2 scalar opera-
tions; analytically, ( )+n n1

2
2 divisions, ( )+ −n n n2 3 51

6
3 2 multiplications, and ( )+ −n n n2 3 51

6
3 2 subtrac-

tions; the details are given in [19]. Backward substitutions require n2 scalar operations: analytically:
( )

∑ =
=

− −ii
n n n

1
1 1

2 multiplications and ( )
∑ =

=

− −ii
n n n

1
1 1

2 and n divisions. Thus, the eigenvalues computation

requires ( )+ −n n n4 15 71
6

3 2 scalar operations. The details for the matrix operations are given in [20].

Table 3 summarizes the calculation burdens of the classical and the proposed algorithms, for the
general multidimensional case, where ≥ ≥n m2 and 2. The details are given in the Appendix. In this table,

Table 2: Calculation burdens of matrix operations

Matrix operation Matrix dimensions Calculation burden

=L of Feigenvalues ×n n CBL

=W of Feigenvectors ×n n ( )+n n n4 15 − 71
6

3 2

= +C A B ( ) ( )× + ×n m n m nm
(1)

= +S A B ( ) ( )× + ×n n n n
+n n1

2
2 1

2

= ⋅C A B ( ) ( )× ⋅ ×n m m l nm n2 −l l
(1)

= ⋅S A B ( ) ( )× ⋅ ×n m m n +n m nm n n− −2 1
2

2 1
2

(2)
⋅A D ( ) ( )× ⋅ ×n n n n n2

(2)
⋅D A ( ) ( )× ⋅ ×n n n n n2

(3)
=B A−1 ×n n ( )n n n16 − 3 −1

6
3 2

(1) S is a symmetric matrix.
(2) D is a diagonal matrix.
(3) For the general multi-dimensional case, where ≥n 2.

Table 3: Calculation burdens of algorithms

Equation Algorithm Calculation burden

Riccati
equation

Classical ( )( )= + + + +m m m n n m nm sCB CB 16 − 3 − 3 3 3LCRE
1
6

3 2 3 2 2

Proposed ( ) ( ) ( )( )= + + + + + + + +n n n n m nm m m m n n n m nm sCB CB 56 6 − 14 2 − 16 − 3 − 5 3 3LPRE
1
6

3 2 2 1
6

3 2 1
2

2 2 2

Transformed
Riccati
equation

Classical ( ) ( )= + + + + +m m m nm n m n n n n n sCB CB 16 − 3 − 2 − − 50 − 3LCTRE
1
6

3 2 2 2 1
2

2 1
2

1
6

3 2

Proposed ( ) ( ) ( )= + + + + + + +m m m nm n m n n n n n sCB CB 16 − 3 − 2 74 − 20 32 12 4LPTRE
1
6

3 2 2 2 1
6

3 1
6

3 2

Lyapunov
equation

Classical = + n sCB CB 3LCLE
3

Proposed ( ) ( )= + + + +n n n n n sCB CB 56 6 − 14 5LPLE
1
6

3 2 1
2

2
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the calculation burden CBL for the computation of the eigenvalues is the same for all algorithms, since we
consider that the computation is achieved by solving the characteristic equation using the same method.

Concerning the Riccati equation solution algorithms, from Table 3, we can write:

{( ) ( ) ( ) }− = − − − + − − −n n s n n n mCB CB 18 15 3 56 6 14 12 6 .n
CRE PRE 6

2 2 (28)

Note that in the case

>

+ −

− −

+

−

− −

= +

+ −

− −

+

−

− −

s n n
n n

n
n n

m n n
n n

n
n n

m56 6 14
18 15 3

12 6
18 15 3

3 2 51 5
18 15 3

12 6
18 15 3

,
2

2 2

2

2 2

since − − >n n18 15 3 02 , for every ≥n 2, equation (28) yields
− >CB CB 0.CRE PRE

The aforementioned notation leads to the conclusion that the proposed algorithm is faster than the
classical algorithm for a small number of iterations, especially when the state and measurement dimen-
sions are large.

Figure 1 depicts the faster algorithm with respect to the state dimension n, the measurement dimension
m, and the number of iterations s the algorithms execute. The proposed algorithm is faster than the classical
algorithm in the region under the curves and is slower than the classical algorithm in the region above the
curves, confirming the aforementioned note.

Concerning the transformed Riccati equation solution algorithms, from Table 3, we obtain:

{( ) ( )}− = − − − + −

n n n s n nCB CB
6

18 15 3 74 3 17 .CTRE PTRE
2 2 (29)

Note that in the case

>

+ −

− −

= +

+ −

− −

s n n
n n

n n
n n

74 3 17
18 15 3

4 2 63 5
18 15 3

,
2

2

2

2

since − − >n n18 15 3 02 , for every ≥n 2, equation (29) yields
− >CB CB 0.CTRE PTRE

The aforementioned notation leads to the conclusion that the proposed algorithm is faster than the
classical algorithm for a small number of iterations. In fact, the proposed algorithm is always faster than the
classical algorithm, when >s 7. In addition, the proposed algorithm outperforms the classical one, when
the number of iterations is greater than 4 as the state dimension increases.

Figure 2 depicts the faster algorithmwith respect to the state dimension n and the number of iterations s
the algorithms execute. The proposed algorithm is faster than the classical algorithm in the region under
the curve and is slower than the classical algorithm in the region above the curve, confirming the afore-
mentioned note.

Concerning the Lyapunov equation solution algorithms, from Table 3, we obtain:

{( ) ( )}− = − − − + −n n s n nCB CB 18 15 3 56 6 14 .n
CLE PLE 6

2 2 (30)

Note that in the case

>

+ −

− −

= +

+ −

− −

s n n
n n

n n
n n

56 6 14
18 15 3

3 2 51 5
18 15 3

,
2

2

2

2

since − − >n n18 15 3 02 , for every ≥n 2, equation (30) yields
− >CB CB 0CLE PLE
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The aforementioned notation leads to the conclusion that the proposed algorithm is faster than the
classical algorithm for a small number of iterations. In fact, the proposed algorithm is always faster than the
classical algorithm, when >s 5. In addition, the proposed algorithm outperforms the classical one, when
the number of iterations is greater than 3, as the state dimension increases.

Figure 3 depicts the faster algorithmwith respect to the state dimension n and the number of iterations s
the algorithms execute. The proposed algorithm is faster than the classical algorithm in the region under
the curve and is slower than the classical algorithm in the region above the curve, confirming the afore-
mentioned note.
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Figure 2: Comparison of transformed Riccati equation solution algorithms.

0 2 4 6 8 10 12 14 16 18 20

dimension n

0

2

4

6

8

10

12

14

16

18

20
nu

m
be

r o
f i

te
ra

tio
ns

Riccati equation - faster algorithm

proposed

classical

m=2
m=5
m=10
m=20

Figure 1: Comparison of the Riccati equation solution algorithms.

1852  Nicholas Assimakis and Maria Adam



4 Conclusions

Riccati and Lyapunov equations are very important in many fields of science. The existence of their solu-
tions involves the knowledge of the eigenvalues of the transition matrix. We have developed new fast
iterative algorithms for solving the Riccati and Lyapunov equations. The proposed algorithms take advan-
tage of the knowledge of the eigenvalues and eigenvectors of the transition matrix. The proposed algo-
rithms hold in the case where the transition matrix is diagonalizable in the form =

−WLW ,1 where the
diagonal matrix L contains the real eigenvalues of F and the matrix W consists of columns containing
the linearly independent eigenvectors of F. It is shown that the proposed algorithms may be faster than the
classical ones depending on the state dimension, the measurement dimension, and the number of iterations
executed, even for a small number of iterations. The proposed algorithms are faster than the classical ones
for such number of iterations that decreases as the state dimension increases. This is rational because the
operations that involve the eigenvalue matrix L are of the order of ( )O n2 , while operations that involve the
eigenvalue matrix F are of the order of ( )O n3 .

More specifically,
(a) Concerning the Riccati equation, the proposed solution is faster than the classical one for a small

number of iterations, especially when the state and measurement dimensions are large.
(b) Concerning the transformed Riccati equation, the proposed solution is always faster than the classical

one when the number of iterations is greater than 7; the proposed algorithm outperforms the classical
one when the number of iterations is greater than 4, as the state dimension increases.

(c) Concerning the Lyapunov equation, the proposed solution is always faster than the classical one when
the number of iterations is greater than 5; the proposed algorithm outperforms the classical one when
the number of iterations is greater than 3, as the state dimension increases.

It is evident that the proposed iterative algorithms outperform the classical ones even for a small
number of iterations.
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Appendix

The calculation burdens of the classical and the proposed algorithms for solving the Riccati and Lyapunov
equations, for the general multi-dimensional case (where ≥ ≥n m2, 2), are analytically presented.

Riccati equation – classical iterative algorithm
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Iteration (s iterations)
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Riccati equation – proposed iterative algorithm

Initialization
=L Feigenvalues of CBL
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Finalization
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Transformed Riccati equation – classical iterative algorithm

Initialization
=L eigenvalues of F CBL
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Transformed Riccati equation – proposed iterative algorithm

Initialization
=L eigenvalues of F CBL

=W eigenvectors of F ( )+ −n n n4 15 71
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Finalization
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Lyapunov equation – classical iterative algorithm

Initialization
=L eigenvalues of F CBL

iteration (s iterations)
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Lyapunov equation – proposed iterative algorithm

Initialization
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