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A multivariate method for meta-analysis
and comparison of diagnostic tests
Niki L. Dimou, Maria Adam and Pantelis G. Bagos*†

We present here an extension of the classic bivariate random effects meta-analysis for the log-transformed sen-
sitivity and specificity that can be applied for two or more diagnostic tests. The advantage of this method is that a
closed-form expression is derived for the calculation of the within-studies covariances. The method allows the di-
rect calculation of sensitivity and specificity, as well as, the diagnostic odds ratio, the area under curve and the
parameters of the summary receiver operator’s characteristic curve, along with the means for a formal compar-
ison of these quantities for different tests. There is no need for individual patient data or the simultaneous eval-
uation of both diagnostic tests in all studies. The method is simple and fast; it can be extended for several
diagnostic tests and can be fitted in nearly all statistical packages. The method was evaluated in simulations
and applied in a meta-analysis for the comparison of anti-cyclic citrullinated peptide antibody and rheumatoid
factor for discriminating patients with rheumatoid arthritis, with encouraging results. Simulations suggest that
the method is robust and more powerful compared with the standard bivariate approach that ignores the corre-
lation between tests. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

Laboratory diagnostic tests are routinely used in medical research to screen for, diagnose, grade and mon-
itor the progression of disease. The most common way to describe the performance of a diagnostic test is
the 2×2 table, which gives a number of positive and negative test results among the subjects with and
without the disease. Diagnostic accuracy is commonly measured using true positive rate (TPR) and false
positive rate (FPR). An equivalent parameterization is in terms of Sensitivity (Se) and Specificity (Sp).
Thus, TPR is equivalent to Sensitivity and FPR to 1-Specificity of a diagnostic test. A well-established
method of summarizing the performance of a diagnostic test is the receiver operating characteristic
(ROC) curve, which indicates the relationship between the TPR and FPR at different diagnostic thresh-
olds [1].

Meta-analysis constitutes a particular type of research, in which a set of original studies is synthesized
and the potential diversity across them is explored using specific statistical methods [2–5]. Meta-analytic
techniques have been proposed for combining the results of different studies that evaluated the accuracy
of a given diagnostic test [6–10]. The major difference of diagnostic studies is that a pair of estimates
(TPR and FPR) is usually reported rather than a single statistic and thus specialized (i.e. bivariate) meth-
odology needs to be utilized.

The simplest (and definitely not recommended) method for meta-analysis of diagnostic tests suggests
that the numbers of true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN)
from each study are summed resulting in a non-stratified meta-analysis design. A separate meta-analysis
of sensitivity and specificity has been proposed based on logit transformations. This approach allows for
heterogeneity in sensitivity and specificity but ignores their between-studies correlation (i.e. the correla-
tion of the random effects). Moreover, separate meta-analysis of positive and negative likelihood ratios
has been proposed [11], which also ignores the correlation between these two parameters. Other authors
have proposed that an estimate of the diagnostic odds ratio (DOR) could be derived from each study and
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combined in a standard meta-analysis [12], which can be performed using either fixed or random effects
models. In the latter case, the between studies heterogeneity is taken into account but we ignore the fact
that in each study a different threshold may have been used; additionally, calculation of a pooled esti-
mate of sensitivity and specificity is not feasible in this case. The most commonly used approach is
the summary ROC (SROC) method [7,13], which uses logit-trasforms of TPR and FPR, and it is based
on simple linear regression of their difference (D, which is equal to logDOR) on their sum (S). A sum-
mary ROC curve can then be derived from the fitted regression line. This method incorporates the use of
a different threshold in each study, but even if a weighted analysis for the sum of the parameters is per-
formed, the measurement error in S is not taken into account.

The hierarchical SROC method [8] expresses the logit-transformed TPR and FPR in terms of two pa-
rameters (accuracy and threshold). This method allows for between studies heterogeneity by modelling
the accuracy parameter as a random effects term. The model was simplified by using Empirical Bayes
estimates, and the results were close to those obtained using the Bayesian analysis [9] and was extended
to account for the situation where no gold standard test is available [14]. Recently, a standard bivariate
random effects meta-analysis of logit-transformed TPR and FPR has been proposed. This method allows
for between studies heterogeneity and for the correlation of TPR and FPR [10,15] involving a hierarchi-
cal structure where the within-study variation refers to the variation in the repeated sampling of the stud-
ies’ results if they were replicated and the between-study variation refers to any variation in the studies’
true underlying estimates of TPR and FPR. Methods that directly model the binomial structure data are,
in general, recommended [10,16]. Harbord and co-workers, showed that the various previously men-
tioned multivariate methods for meta-analysis of diagnostic tests are essentially equivalent models that
use a different parameterization [6]. Recently, a composite likelihood method for bivariate meta-analysis
has been proposed, which overcomes the nonconvergence problem of the standard likelihood estimation
methods when the number of studies is small and is more robust than the standard likelihood inference to
misspecifications of the joint distributions assumptions [17]. When the disease prevalence is known, as in
cohort studies, a trivariate modelling of the disease prevalence, sensitivity and specificity has been proposed
[18]. This approach accounts for the dependence of sensitivity and specificity on disease prevalence, which
is more obvious when a continuous trait is used as a classifier. This dependence was assessed using a Pear-
son-type correlation coefficient [19]. A shortcoming of this trivariate modelling approach is that it can only
include cohort studies with information estimating study-specific disease prevalence. Thus, two main alter-
native models have been introduced, including a novel Bayesian hierarchical model for combing cohort and
case-control studies and correcting partial verification bias [20] and a hybrid model, where an alterative in-
ference procedure based on composite likelihood is used [21]. Ma and coworkers have presented a recent
overview of the existing multivariate methods for meta-analysis of diagnostic studies [22].

When one wants to compare two or more diagnostic tests, the situation is complicated. Several
methods, which make use of the DOR, have been proposed. The traditional method of meta-analysis
for the comparison of two diagnostic tests extracts D values (i.e. the difference of logit-trasformed
TPR and FPR) from each study (or the estimated values using the SROC model) and then summarizes
them. The diagnostic tests can then be compared using the difference of summary Ds. Another approach
is based on the relative OR as the relative accuracy of one test against the other and makes the assump-
tion that the two tests were performed on ‘paired’ subjects within each study. If sufficient data are avail-
able (which however, rarely is the case), the calculation of the conditional relative OR (CROR) can be
used based on the discordant results of diagnostic tests [23]. Furthermore, statistical methodology for re-
peated measurements has also been adopted in order to combine several studies of diagnostic tests,
where each study reports on more than one test [24]. In situations when a gold standard is not available,
a multivariate random effects model has been used to model simultaneously the sensitivity, the specific-
ity and the prevalence of the disease [25]. Mixed effects models or Bayesian hierarchical models can be
used for the estimation of the parameters. When the conditional independence assumption does not hold
[26], a correlation among the diagnostic tests can be imposed. The aforementioned approach and the hi-
erarchical SROC framework by Dendukuri and coworkers [14] are closely related and some of their
submodels are equivalent [27]. Finally, Trikalinos and coworkers introduced a Bayesian model that
incorporates the relations between TPR and FPR across two or more tests when those are applied to
the same patients [28].

In this work, we present a simple yet powerful approach for performing multivariate meta-analysis of
diagnostic studies. The model we propose is a direct extension of the multivariate meta-analysis method
of diagnostic tests [10,15]. The key element of our approach is the calculation of the within studies
covariance of the parameters necessary for the multivariate meta-analysis method [29]. Because the
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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model is based on the general model for multivariate meta-analysis, it has some very important features:
it can easily incorporate studies reporting only one of the tests under a missing at random assumption
and, thus, allows for borrowing strength from external studies [30]; it can be easily fitted using standard
software used for multivariate meta-analysis [31,32]. It allows after appropriate transformations the
recovery of other important metrics such as the DOR, the SROC curve and the area under the curve
(AUC), and finally, it allows the direct comparison of theses parameters of the different tests using for-
mal techniques. In Section 2, we introduce the multivariate meta-analysis model for two or more diag-
nostic tests; we derive formulae for within-study covariance and recover the SROC method and the
AUC. In Section 3, we perform a simulation study to investigate the properties of our method. In Section
4, we apply our method to data from a meta-analysis of diagnostic tests for rheumatoid arthritis. We
close with discussion in Section 5.
2. Methods

2.1. The multivariate model

Let Yi, X1i and X2i denote three categorical random variables with two levels (i.e. 0, 1) that are used to
classify ni individuals for study i (i=1,2,…,k). Usually, Yi denotes the disease status and X1i, X2i the test
result (positive or negative) for study i (i=1,2,…,k). In the general case, the data would be presented in
the form of a three-dimensional (2×2×2) contingency table (Table I) where we denote the counts as nclpi
with c, l,p∈{0, 1} and this table is referred to as partial contingency table. Usually, the results of two di-
agnostic tests are represented in the form of Table II, which, in the terminology of contingency tables, is a
marginal table because for each test, the outcome of the other test is ignored. The logit transformations ofdTPRji(cSeji) and dFPRji (1-cSpji) for test j (j=1,2) and for study i (i=1,2,…,k) are given by the following:

by1i ¼ logit dTPR1i

� �
¼ logit bSe1i� �

¼ log
TP1i

FN1i

� �
¼ log

n11þi

n10þi

� �
(1)

by2i ¼ logit dFPR1i

� �
¼ logit 1�cSp1i� �

¼ log
FP1i

TN1i

� �
¼ log

n01þi

n00þi

� �
(2)
Table I. The table that defines the joint distribution for the association of the two diagnostic tests according to
the disease status for study i (i= 1,2,…,k).

Yi

Yi = 1 Yi = 0
X2i

X2i = 1 X2i = 0 X2i = 1 X2i= 0
X1i X1i = 1 n111i n110i n011i n010i

X1i = 0 n101i n100i n001i n000i

We denote the counts as nclpi, with c being the indicator for Yi, l the indicator for X1i and p the indicator for X2i. This
table is usually referred to as «partial contingency table». See also [29,39].

Table II. Classification of the findings of two diagnostic tests according to the test result (positive or nega-
tive) and the disease status for study i (i= 1,2,…,k).

X1i X2i

X1i = 1 X1i = 0 X2i = 1 X2i = 0
Yi Yi = 1 n11+i (TP1i) n10+i (FN1i) n1+1i (TP2i) n1+0i (FN2i)

Yi = 0 n01+i (FP1i) n00+i (TN1i) n0+1i (FP2i) n0+0i (TN2i)

We denote the counts as nclpi, with c being the indicator for Yi, l the indicator for X1i and p the indicator for X2i. Thus,
the interior cells of the table consist of the marginals of Table I (i.e. ncl + i = ncl0i + ncl1i and nc + pi = nc0pi + nc1pi). In
terms of contingency tables, these two tables are named «marginal tables». See also [29,39].
FN, false negative; FP, false positive; TN, true negative; TP, true positive.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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by3i ¼ logit dTPR2i

� �
¼ logit bSe2i� �

¼ log
TP2i

FN2i

� �
¼ log

n1þ1i

n1þ0i

� �
(3)

by4i ¼ logit dFPR2i

� �
¼ logit 1�cSp2i� �

¼ log
FP2i

TN2i

� �
¼ log

n0þ1i

n0þ0i

� �
(4)

with approximate variances estimated by the following:

s21i ¼
1

TP1i
þ 1
FN1i

¼ 1
n11þi

þ 1
n10þi

(5)

s22i ¼
1

FP1i
þ 1
TN1i

¼ 1
n01þi

þ 1
n00þi

(6)

s23i ¼
1

TP2i
þ 1
FN2i

¼ 1
n1þ1i

þ 1
n1þ0i

(7)

s24i ¼
1

FP2i
þ 1
TN2i

¼ 1
n0þ1i

þ 1
n0þ0i

(8)

It should be noted that in the traditional approach for bivariate meta-analysis for a single diagnostic
test [6,10], a bivariate meta-analysis is performed for the pairs of outcomes (i.e. ŷ1i, ŷ2i or ŷ3i, ŷ4i). When
we want to perform a joint analysis, following the general framework for multivariate meta-analysis
[33,34], we will denote by yi the vector containing the four different estimates and by β, the vector of
the overall means given by the following:

yi ¼

by1iby2iby3iby4i

0
BBB@

1
CCCA; and β ¼

β1
β2
β3
β4

0
BBB@

1
CCCA (9)

In a multivariate random-effects setting, we assume that the four ŷi ’ s are distributed following a mul-
tivariate normal distribution:

by1iby2iby3iby4i

2
6664

3
7775∼MVN

β1i
β2i
β3i
β4i

2
6664

3
7775; Ci½ �

8>>><
>>>:

9>>>=
>>>; (10)

where Ci is the within-studies covariance matrix:

Ci ¼

s21i ρw12is1is2i ρw13is1is3i ρw14is1is4i
ρw12is1is2i s22i ρw23is2is3i ρw24is2is4i
ρw13is1is3i ρw23is2is3i s23i ρw34is3is4i
ρw14is1is4i ρw24is2is4i ρw34is3is4i s24i

0
BBBB@

1
CCCCA (11)

The means (β1iβ2iβ3iβ4i) are considered random terms, distributed similarly as follows:

β1i
β2i
β3i
β4i

2
6664

3
7775

2
6664

3
7775∼MVN

β1
β2
β3
β4

2
6664

3
7775; Σ½ �

8>>><
>>>:

9>>>=
>>>; (12)

where Σ is the between-studies covariance matrix, given by the following:
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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Σ ¼

τ21 ρΒ12τ1τ2 ρΒ13τ1τ3 ρΒ14τ1τ4
ρΒ12τ1τ2 τ22 ρΒ23τ2τ3 ρΒ24τ2τ4
ρΒ13τ1τ3 ρΒ23τ2τ3 τ23 ρΒ34τ3τ4
ρΒ14τ1τ4 ρΒ24τ2τ4 ρΒ34τ3τ4 τ24

0
BBBB@

1
CCCCA (13)

Thus, the final marginal model on which we base the inference is as follows:
yi∼MVN β;Σþ Cið Þ (14)

or we could rewrite the marginal model described in Eqn 14 as follows:

by1iby2iby3iby4i

3
7775∼MVN

β1
β2
β3
β4

2
6664

3
7775;

s21i þ τ21 ρw12is1is2i þ ρΒ12τ1τ2 ρw13is1is3i þ ρΒ13τ1τ3 ρw14is1is4i þ ρΒ14τ1τ4
ρw12is1is2i þ ρΒ12τ1τ2 s22i þ τ22 ρw23is2is3i þ ρΒ23τ2τ3 ρw24is2is4i þ ρΒ24τ2τ4
ρw13is1is3i þ ρΒ13τ1τ3 ρw23is2is3i þ ρΒ23τ2τ3 s23i þ τ23 ρw34is3is4i þ ρΒ34τ3τ4
ρw14is1is4i þ ρΒ14τ1τ4 ρw24is2is4i þ ρΒ24τ2τ4 ρw34is3is4i þ ρΒ34τ3τ4 s24i þ τ24

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

(15)

The diagonal elements of Ci are the study-specific estimates of the variance that are assumed known
[33] and are given in Eqns 5–9. Assuming s2i terms to be known instead of to be estimated has little impact
on the results, which is the basis for the traditional meta-analysis [35]. The off-diagonal elements ofCi cor-
respond to the pairwise within-studies covariances, for instance ρw12is1is2i=cov(ŷ1i, ŷ2i) (with ρw12i being
the within-studies correlation of the TPR and FPR of the first diagnostic test for study i that has to be
known beforehand). Because cov(ŷ1i, ŷ2i) =0 and cov(ŷ3i, ŷ4i) =0 the remaining covariances need to be cal-
culated (see next section). The diagonal elements of Σ are the between studies variances, whereas the off-
diagonal elements correspond to the between studies covariances that are to be estimated from the data
during the fitting procedure (for instance ρΒ12 is the between studies correlation of the TPR and FPR of
the first diagnostic test). We propose an unstructured specification for Σ or we could eliminate the param-
eters that have to be estimated by imposing a structured variant Σ when the number of tests increases (for
instance we could set between-studies variances and correlations among tests to be equal).

The parameters estimated from the multivariate model of Eqn 14 can be directly compared for
instance, using a Wald test or a bivariate test based on a chi-square distribution. Other measures such
as the DOR, the AUC and the parameters of the SROC curve can be easily constructed [10] and com-
pared, as we shall show in the next sections. A direct extension of the method for more than two diag-
nostic tests is straightforward.

2.2. Calculation of the within-studies covariances

The method used here is a special case of a general methodology that has been recently proposed [29].
Thus, we may proceed with some probability calculations (Appendix A) using the properties of the
covariance function in order to derive the following:

cov by1i;by3ið Þ ¼ n111i
n111i þ n110ið Þ n111i þ n101ið Þ �

n110i
n111i þ n110ið Þ n110i þ n100ið Þ

� n101i
n101i þ n100ið Þ n111i þ n101ið Þ þ

n100i
n101i þ n100ið Þ n110i þ n100ið Þ

¼ ∑
l
∑
p

�1ð Þl�p n1lpi
n1lþin1þpi

� � (16)

cov by2i;by4ið Þ ¼ n011i
n011i þ n010ið Þ n011i þ n001ið Þ �

n010i
n011i þ n010ið Þ n010i þ n000ið Þ

� n001i
n001i þ n000ið Þ n011i þ n001ið Þ þ

n000i
n001i þ n000ið Þ n010i þ n000ið Þ

¼ ∑
l
∑
p

�1ð Þl�p n0lpi
n0lþin0þpi

� � (17)

cov by1i;by4ið Þ ¼ cov by2i;by3ið Þ ¼ 0 (18)
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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Attention should be paid when the number of the participants is not equal for the two diagnostic tests
for a given published study. In such a case, we can extrapolate the counts of the diagnostic test with the
smaller sum to match the larger one and proceed based on the extrapolated counts.

2.3. Handling missing information

As it is apparent from Eqns 16 and 17, the exact counts of Table I need to be known for the calculation of
the within studies covariances. In the simplest case, where, for each study i, the counts of Table I are
known, the calculation of the covariances is straightforward. In practical applications however, we do
not expect all studies to report such information.

When this information is available only for a subset of the studies, we can proceed as follows. First,
for these «complete» studies, we can calculate, the conditional ORs, which reflect the association of the
two diagnostic tests for a given disease status:

cORYi¼1 ¼ n111in100i
n101in110i

(19)

cORYi¼0 ¼ n011in000i
n010in001i

(20)

Standard random effects meta-analysis can be used in order to derive a combined estimate of the condi-
tional ORs for the diseased and the non-diseased individuals, across the «complete» subset of studies. After
obtaining these combined estimates, we can use them on the «incomplete studies» (those for which the interior
cells of Table I are not given) along with the knowledge of the marginal counts of Table I for each disease
status and derive expressions of the counts for each cell solving a system of equations (Appendix B).

If the conditional ORs do not differ according to disease status or if we have some prior knowledge
that this is the case, the iterative proportional fitting (IPF) algorithm [36] can be used in order to obtain
the interior cells, even if no study reports the full partial table (Table I). It should be noted that the IPF
algorithm assumes that there is no three-way interaction in the 2×2×2 contingency table. In other
words, it assumes that the two ORs of Eqns 19 and 20 are equal. Thus, this approach (although not per-
fect) is more general than the assumption of conditional independence that is usually employed in anal-
ysis [37,38] and meta-analysis of diagnostic tests with no gold standard [14,25]

2.4. Recovering the summary receiver operating characteristic method and the area under the curve

Under the SROC approach [7,13], the logit-trasformed TPRji and FPRji are used and a linear regression of
their difference (Dji) on their sum (Sji) is performed. The parameters of the regression of D1i on S1i for the
first test can be expressed using the parameters of the bivariate model with τ21 and τ

2
2 denoting the between

studies variances of y1i and y2i respectively, as well as ρΒ12τ1τ2 the between studies covariances of y1i and
y2i. In particular, from Eqn 12, it turns out that the covariance of D1i and S1i is equal to τ21 � τ22, and the
variance of S1i is equal to τ21 þ τ22 þ 2ρΒ12τ1τ2. Thus, the slope is b1 ¼ τ21 � τ22

� �
= τ21 þ τ22 þ 2ρΒ12τ1τ2
� �

;

the intercept is a1 =β1� β2�b(β1 +β2), and the residual variance of the regression is given by σ2D1jS1 ¼

τ21 þ τ22 � 2ρΒ12τ1τ2
� �� τ21�τ22ð Þ2

τ21þτ22þ2ρΒ12τ1τ2
[10]. These can easily be estimated by plugging in the model

parameter estimates; the standard errors are calculated using the Delta method [39]. Similar expressions
can be derived for the second diagnostic test by using the appropriate estimates of the between studies
variance–covariance matrix (i.e. τ23; τ

2
4; ρΒ34τ3τ4). It is worth-mentioning that the coefficient bj represents

the dependence of the test accuracy on threshold. If bj≈0, then the studies are homogeneous and can be
summarized by an overall DORj noting that aj= ln(ORj).

When the parameters aj and bj are estimated, the relationship between TPRji and FPRji can be deduced:

TPRji ¼
exp aj

1�bj

� �
FPRji

1�FPRji

� � 1þbjð Þ= 1�bjð Þ

1þ exp aj
1�bj

� �
FPRji

1�FPRji

� � 1þbjð Þ= 1�bjð Þ (21)

Equation 21 gives TPRji at any given value of FPRji and hence the entire SROC curve. While there
may be some interest in identifying particular points on the curve, it is often useful to have an overall
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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summary measure of the behaviour of the curve. Perhaps, the most appropriate such measure is the
AUC, which can be calculated as [40]:

AUCj ¼ ∫
1

0

exp aj
1�bj

� �
x

1�x

� � 1þbjð Þ= 1�bjð Þ

1þ exp aj
1�bj

� �
x

1�x

� � 1þbjð Þ= 1�bjð Þdx (22)

Using the delta method, an approximate variance for AÛCj is as follows:

var AbUCj

� �
¼ ∂AUCj

∂aj

� �2

var baj� �þ ∂AUCj

∂bj

� �2

var bbj� �
þ 2

∂AUCj

∂aj

� �
∂AUCj

∂bj

� �
cov baj; bbj� �

(23)

where:

∂ AUCj

� �
∂aj

¼ 1
1� bj

� �
exp

αj
1� bj

� �
∫
1

0

x
1�x

� � 1þbjð Þ= 1�bjð Þ

1þ x
1�x

� � 1þbjð Þ= 1�bjð Þexp aj
1�bj

� �� �2dx (24)

∂ AUCj

� �
∂bj

¼ 1
1� bj

� �2

exp
aj

1� bj

� �
∫
1

0

x
1�x

� � 1þbjð Þ= 1�bjð Þ aj þ 2ln x
1�x

� �� �
1þ x

1�x

� � 1þbjð Þ= 1�bjð Þexp a
1�bj

� �� �2dx (25)

In the homogeneous case, bj=0, and the general expression (Eqn 22) becomes [40]:

AUChomj ¼
DORj

DORj � 1
� �2 DORj � 1

� �� ln DORj

� �� 	
(26)

where AUChomj indicates the AUCj for homogeneous studies and DORj=exp( aj). If aj=0, then
AUChomj ¼ 1

2. Although only valid for homogeneous studies, Eqn 26 is a useful upper bound and provides
a good approximation for AUCj in heterogeneous studies. Using the delta method, we may also obtain:

SE AbUChomj

� �
¼ 1

DORj � 1
� �3 DORj þ 1

� �
lnDORj � 2 DORj � 1

� �� 	
SE DbORj

� �
(27)

Finally, a formal test for the equality of the AUC for the two tests (i.e. AUC1 =AUC2) could be
derived using the properties of the AUC [40] and the Delta method. This would lead to the formulation

of the null hypothesis H0 :d=AUC1�AUC2 = 0, Ha :d≠0. The variance of bdwill be equal to GVG’
where V is the estimated variance-covariance matrix and G is the derivative matrix of d with respect

to the vector of estimated coefficients aj, bj
∂ dð Þ
∂a1

∂ dð Þ
∂b1

∂ dð Þ
∂a2

∂ dð Þ
∂b2


 �
. Thus, GVG’ will be equal to

GVG’ ¼ ∂ dð Þ
∂a1

∂ dð Þ
∂a1

var ba1ð Þ þ ∂ dð Þ
∂b1

cov ba1;bb1� �
þ ∂ dð Þ

∂a2
cov ba1;ba2ð Þ þ ∂ dð Þ

∂b2
cov ba1;bb2� �� 

þ∂ dð Þ
∂b1

∂ dð Þ
∂a1

cov ba1;bb1� �
þ ∂ dð Þ

∂b1
var bb1� �

þ ∂ dð Þ
∂a2

cov ba2;bb1� �
þ ∂ dð Þ

∂b2
cov bb1;bb2� �� 

þ∂ dð Þ
∂a2

∂ dð Þ
∂a1

cov ba1; bα2ð Þ þ ∂ dð Þ
∂b1

cov ba2;bb1� �
þ ∂ dð Þ

∂a2
var ba2ð Þ þ ∂ dð Þ

∂b2
cov ba2;bb2� �� 

þ∂ dð Þ
∂b2

∂ dð Þ
∂a1

cov ba1;bb2� �
þ ∂ dð Þ

∂b1
cov bb1;bb2� �

þ ∂ dð Þ
∂a2

cov ba2;bb2� �
þ ∂ dð Þ

∂b2
var bb2� �� 

(28)

with the partial derivatives for diagnostic test j (j=1,2) given by the following:
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∂ dð Þ
∂aj

¼ �1ð Þjþ1 1
1� bj

� �
exp

αj
1� bj

� �
∫
1

0

x
1�x

� � 1þbjð Þ= 1�bjð Þ

1þ x
1�x

� � 1þbjð Þ= 1�bjð Þexp aj
1�bj

� �� �2dx (29)

∂ dð Þ
∂bj

¼ �1ð Þjþ1 1
1� bj

� �2

exp
aj

1� bj

� �
∫
1

0

x
1�x

� � 1þbjð Þ= 1�bjð Þ aj þ 2ln x
1�x

� �� �
1þ x

1�x

� � 1þbjð Þ= 1�bjð Þexp aj
1�bj

� �� �2dx (30)

In the homogeneous case (i.e. bj=0), the general expression (Eqn 28) for estimating the variance of bd
is simplified because the terms including bj’s are cancelled out. In such a case, the variance of bdhomis:

var bdhom

� �
¼ ∂dhom

∂a1

� �2

var ba1ð Þ þ ∂dhom
∂a2

� �2

var ba2ð Þ þ 2
∂dhom
∂a1

� �
∂dhom
∂a2

� �
cov ba1;ba2ð Þ (31)

and the partial derivatives for diagnostic test j (j=1,2) can be calculated as follows:

∂ dhomð Þ
∂aj

¼ �1ð Þjþ1 exp αj
� �

exp αj
� �

αj � 2
� �þ αj þ 2

� 	
exp αj

� �� 1
� 	3 (32)

3. Simulation study

To evaluate the proposed methodology, we conducted simulation studies. Section C of our supplemen-
tary material provides the simulation procedures and the results from this study. We compare the pro-
posed multivariate method with the standard bivariate approach. Briefly, our simulations suggest that
in the scenarios with 20 studies and 200 participants per study, the multivariate method produces
Figure 1. Power calculations to detect differences in dAUC1- dAUC2 under the multivariate and bivariate method for
meta-analysis of diagnostic studies. We conducted 500 replications with 20 studies in each meta-analysis. The disease
prevalence was set at 50% with 200 participants in each study. For simplicity, we used the exact analytical expression

(Eqn 26) in order to calculate the area under the curve (AUC) assuming that our studies are homogeneous.
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unbiased estimates and has greater power to detect small differences in sensitivity or specificity preserv-
ing the nominal type I error rate when compared with the bivariate approach. Moreover, the multivariate

method has always greater power (up to 12%) to detect small differences in the dAUC (Figure 1). The gain
of our method was less pronounced in the scenarios with large number of participants (>500) per study
that report results of both tests (no missing data) and when there are large differences in either sensitivity
or specificity.

4. Application of the method

The method was applied in the data obtained from a meta-analysis that aimed to determine whether anti-
cyclic citrullinated peptide antibody (anti-CCP antibody) identifies more accurately patients with rheu-
matoid arthritis than does of rheumatoid factor (RF) [41] (Appendix D). As far as anti-CCP antibodies
are concerned, we included studies using the CCP2 assay. In particular, a total of 50 and 29 studies pro-
vided information concerning only RF or anti-CCP2 antibody, respectively. Twenty two studies
assessed both RF and anti-CCP2 antibody for diagnosing rheumatoid arthritis.

From the 22 studies, which assessed simultaneously both diagnostic tests, detailed data for the counts
of Table I were available for two studies. A total of six studies reported estimates for sensitivity and
specificity when both diagnostic tests where positive or when at least one of the tests is positive. In such
a case, we show that the counts of Table I can be accurately reconstructed (Appendix E). One study pro-
vided information for sensitivity, specificity, positive and negative predictive value for those individuals
who had a negative test result for one of the tests (the RF diagnostic test in particular). Similarly, a set of
corresponding equations can be derived for this case, and the counts for Table I were also calculated
(Appendix E). The total number of the participants was not equal for both diagnostic tests in one study,
so we extrapolated the counts of the smaller sum to match the larger one.

Finally, detailed data for the counts of Table I were available for six studies for diseased participants
only. There was lack of data for a total of seven studies that evaluated both tests, and these numbers
needed to be imputed. A combined estimate of the conditional OR for the association of the two diag-

nostic tests was calculated for non-diseased and diseased individuals (cORYi¼0 ¼ 6:537with I2 = 52.7%

and τ2 =0.7817, cORYi¼1 ¼ 12:112 with I2 =52.8% and τ2 =0.2298, respectively) using a standard ran-
dom effects meta-analysis [42]. These estimates differ significantly, indicating that there is a three-way in-
teraction in the contingency table. Consequently, our best guess is to assume that these estimates are close
to the true values for the respective ORs in the studies that did not provide sufficient information. Then,
using the equations illustrated in Appendix B, we can derive the counts of Table I. We used mvmeta
command [43] in Stata (Appendix F) under an unstructured specification for Σ. We need to emphasize
that the largest portion of the code refers to the estimation of the counts for the studies that did not pro-
vide sufficient information, the calculation of the parameters of the regression of Dji on Sji and the cal-
culation of the AUCj. For comparison, the parameters of the bivariate model were also estimated.

The dTPR of the two diagnostic tests does not differ significantly (Wald test: z=�0.20; p-value =0.834,

Table III). Anti-CCP2 antibody, however, had lower dFPR and thus higher specificity than RF (Wald test:
z=5.57; p-value<0.001) (Figure 2). From the 22 studies, which assessed simultaneously both tests, the

within-studies correlation of the dTPR of the two tests (i.e. bρw13i) varied from 0.148–0.684 with a mean

value equal to 0.463 while the correlation of the dFPR of the two tests (i.e.bρw24i) varied from 0–0.669 with
Table III. Estimates of the multivariate and bivariate model of dTPRji and dFPRji (logits) for the two diagnostic
tests (bβ1-bβ2 for rheumatoid factor and bβ3-bβ4 for anti-cyclic citrullinated peptide 2 antibody).

Multivariate model Bivariate model

Μean (95% CI) z bτ2 Μean (95% CI) z bτ2bβ1 0.750 (0.538, 0.962) 6.94 0.537 0.708 (0.491, 0.925) 6.39 0.534bβ2 �1.845 (�2.141, -1.550) -12.23 0.977 �1.876 (�2.173, -1.579) -12.37 0.990bβ3 0.774 (0.534, 1.015) 6.31 0.449 0.823 (0.571, 1.075) 6.41 0.406bβ4 �2.986 (�3.310, -2.663) -18.08 0.519 �2.909 (�3.227, -2.590) -17.90 0.527bρΒ12 = 0.212, bρΒ13 = 0.779, bρΒ14 = 0.386, bρΒ23
= 0.194,bρΒ24 = 0.410, bρΒ34 = 0.487 bρΒ12 = 0.220, bρΒ34 = 0.477

TPR, true positive rate; FPR, false positive rate.
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Figure 2. Forest plots of the sensitivity and specificity of the two diagnostic tests, obtained by the multivariate
meta-analysis. CCP, cyclic citrullinated peptide.
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a mean value equal to 0.197. The between-studies correlation of the dTPR and dFPR of the two tests were
estimated as bρΒ13 = 0.779 and bρΒ24 =0.410. Furthermore, using the estimates of the between studies
covariances, the parameters of the regression of Dji on Sji were calculated as well as the SROC curve

[10] with bb1 =�0.241 [95% confidence interval (CI): �0.505, 0.022], bb2 =�0.049 (95% CI: �0.344,
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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0.246), â1 = 2.331 (95% CI: 1.901, 2.761) and â2 =3.653 (95% CI: 2.984, 4.323) (Figure 3). dAUC for RF
and Anti-CCP2 antibody was calculated as 0.825 and 0.927 respectively with these two values showing
a statistically significant difference, suggesting that in overall, the anti-CCP2 antibody is better com-
pared with RF (z=�3.54; p-value<0.001) (Figure 4). We should also mention that model
misspecification (i.e. ignoring the differences in the conditional ORs in patients and controls) results
in no significant changes in the pooled estimates or in the conclusions regarding the superiority of
anti-CCP2 antibody.
5. Discussion

We described here a simple yet powerful method for meta-analysis and comparison of diagnostic tests by
extending the bivariate approach [10,15]. The key point of this method is that the within-studies covari-
ances can be calculated via a closed form expression using a recently published method [29]. The method
inherits all the advantages derived from the bivariate model; that is, the between-studies correlation
among sensitivity and specificity is accounted for. Point estimates and confidence intervals for these
two parameters can be calculated, and a construction of SROC curve is also feasible. Parameters such
as the DOR, the AUC and the likelihood ratios can also be calculated and compared for the two tests.
Most importantly, the method can easily incorporate (under a missing at random assumption) studies
Figure 4. Summary receiver operating characteristic (SROC) curve obtained from the multivariate model of the
two diagnostic tests ( dAUC =0.825 and 0.927 for rheumatoid factor (RF) and anti-cyclic citrullinated peptide

(CCP) 2, respectively). AUC, area under the curve.

Figure 3. Plot of the sum of logit-trasforms of dTPRji and dFPRji(Ŝji) on their difference (bDji) of the two diagnostic
tests under the summary receiver operating characteristic method. The regression coefficients are obtained by the
multivariate meta-analysis model as described in the text. CCP, cyclic citrullinated peptide; TPR, true positive

rate; FPR, false positive rate.
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reporting only one of the tests and thus allows borrowing strength from external studies [30]; it can be
easily fitted using standard software used for multivariate meta-analysis [31,32], and it allows for the
direct formal comparison of the different tests using formal techniques (Wald test). As a standard multivar-
iate model, it can also incorporate covariates, which may be correlated with the disease process, the diag-
nostic testing procedure or account for strata with different disease prevalence. This approach thus yields
a random-effects meta-regression [44], where various study level characteristics can be used as linear pre-
dictors, in order to estimate the extent to which these covariates explain the observed heterogeneity.

Our simulations reveal that in the realistic scenario that we evaluated, our method is more likely to
produce unbiased estimates and to preserve the nominal type-I error rate, whereas it has greater power
to detect small differences in sensitivity or specificity. When the meta-analysis includes a large number
of studies, each having a large number of participants, that report the results of both tests and when these
tests have large differences in either sensitivity or specificity, we expect that the gain of using the method
will be negligible. However, we do not expect in any case the method to be worse compared with stan-
dard bivariate meta-analysis. Moreover, simulations under a misspecified model (i.e. assuming that there
is no three-way interaction and using the IPF algorithm) showed that the method is still better compared
with the standard bivariate approach. These conclusions are in agreement with previous simulation
results concerning the superiority of bivariate meta-analysis over univariate one but also have theoretical

justification [45–47]. Algebraic calculations reveal that for dTPR and dFPR>0.5, the covariance is always

positive, and thus, we expect the variance of the differences (bβ1-bβ3; bβ2-bβ4) to be always smaller when
we take this covariance into account. However, the covariance is rather small compared with the vari-
ance, and its contribution decreases with increased sample size or increased between studies heterogene-
ity. All these taken together, explain the fact that we do not see remarkably better results (at least for the
range of values that we are interested in) but also provide the assurance that the multivariate method will
be at least as accurate as the bivariate one, under any circumstances. The same rationale holds also for

the power to detect differences in the dAUC . When the real difference between the tests is large, both
methods have 100% power to detect it, but the multivariate method has always greater power (up to
12%) to detect small differences that may be important in clinical practice.

Some other methods for comparing in a meta-analysis of two diagnostic tests have been proposed in
the literature. As far as diagnostic ORs are concerned [12], the simple comparison of their log-transfor-
mations or those derived using SROC method ignores the correlation of the two diagnostic tests, in cases
where the same patients are measured. When the tests are applied to different populations (which does
not usually happen), the test is valid, but still, it involves only the DOR and not sensitivity or specificity.
The CROR method [23] is simple but requires individual patient data for both tests which are not always
available. A very important side-effect of our work that needs to be emphasized is that the methods for
reconstructing the tables that we presented in the Appendix E can be directly used with the CROR
method. Thus, a method originally developed for use mainly with individual data can be used using
summary data collected from the literature. The particular approach, after the imputation procedure,
has the advantage of being easy to use and requires no more than a standard software for univariate
meta-analysis. As a proof of principle, from the original data, nine studies reported data sufficient to cal-
culate CROR. Combining these studies, yield an estimate of CROR of 0.144 (95% C.I.: 0.066, 0.317)
for the RF over the anti-CCP2 antibody. However, using the equations of the Appendix E, we were able
to reconstruct the data for an additional 13 studies, and this enables us to calculate a more precise esti-
mate of CROR of 0.152 (95% C.I.: 0.090, 0.256), suggesting a superiority of the anti-CCP2 antibody
over RF. Nevertheless, this method has the additional disadvantage that it cannot incorporate studies that
report only one test, whereas a direct comparison of sensitivity, specificity or AUC is not feasible and
neither is it the construction of a summary SROC curve. We also need to comment on the Bayesian ap-
proach proposed by Trikalinos and coworkers [28], an approach that shares many common features with
this work. The main difference besides the Bayesian formalism is the fact that Trikalinos and coworkers
model the correlation of the two tests as a random parameter, whereas in this work, we use directly the
actual study-specific correlations. When all studies report the cross-tabulation table, we expect that the
two approaches will yield nearly identical results. Moreover, the simulations we conducted clearly
showed that the model is robust even under severe misspecification. Thus, the main advantage of our
approach is the simplicity and the fact that it can be fitted with standard software, without however los-
ing in accuracy. One additional advantage as we already noted is that it inherits all the advantages de-
rived from the standard bivariate model and additionally we made a lot of effort to derive tests for the
parameters of the SROC curve and AUC.
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016



Figure 5. Plot check for multivariate normality of logit dTPRji

� �
and logit dFPRji

� �
for the 22 studies, which

assessed simultaneously both diagnostic tests for discriminating patients with rheumatoid arthritis. The estimates
are approximately normal as the graph approximates a 45° line.
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We have to emphasize that our method is designed to be used for comparison of diagnostic tests in
situations when a gold standard exists. On the contrary, some other multivariate random effects methods
have been proposed to model simultaneously the sensitivity and the specificity of the two tests along
with the prevalence of the disease, in situations when a gold standard is not available [14,25]. These
methods are based on the conditional independence assumption [26,37,38], which is rather strong, but
it is not needed in our approach. When this assumption is not met, a correlation among the diagnostic
tests can be imposed, but nevertheless, our approach is more direct because it calculates the correlation
directly from the joint distribution of the two tests and the disease status. Assumptions about the missing
data mechanism become crucial as the amount of missing data increases when multiple diagnostic tests
are used and the missing at random assumption may hold only in special situations, excluding of course
cases where test ordering depends on health status. Because we used the classical model for multivariate
meta-analysis, the method can handle data missing completely at random or missing at random [32,47].
In general, simple diagnostics for the case of informative missing mechanisms can be constructed, for
instance by performing subgroup analyses for the studies that report both tests versus studies that report
only one of the tests.

Our method uses summary data available on the published reports. The statistical theory behind the
proposed methodology is very simple and is based on standard large sample approximations and nor-
mality assumptions [39,48] that are in everyday use by researchers performing meta-analyses of pub-
lished data. In our illustrative example with the two diagnostic tests used for discriminating patients
with Rheumatoid Arthritis, Henze–Zirkler’s test [49] provided by the multnorm command in Stata
[50,51], provided no indication that the multivariate normality assumption is violated (Figure 5). In
some extreme cases, some practical issues may arise using the approximate likelihood inference
[52,53]. Theoretically, the method is expected to fail when the sample size is very small or when there
are several studies with small, or even zero, cell counts. In such situations, relying on the usual continu-
ity correction that consists of adding ½ to the cell counts is the only option that additionally seems to
perform quite well [54]. Another option could be to use multinomial distributions but to the authors’
knowledge of multinomial likelihood for the particular problem cannot be fit using xtmelogit routine
in Stata or lmer in R. Optimizing the likelihood for performing multivariate meta-analysis using the mul-
tinomial likelihood involves calculating complicated integrals numerically, which is outside the scope of
the present work.

Overall, we presented a simple and powerful method for performing meta-analysis and comparison of
diagnostic tests. The method can be fitted in nearly all statistical packages. In Appendix F, we give
illustrative code in Stata, and we hope that this method will be widely used in future studies.
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