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1. Introduction

The spectral radius, that is, the largest in magnitude eigenvalue, of a nonnegative 
matrix plays a central role in many disciplines of applied mathematics and computer 
science such as graph theory, control theory, cryptography and even biology and epidemic 
modeling. Indicatively, the stability of a linear invariant discrete-time nonnegative system 
is ensured whenever the value of the spectral radius of its system matrix does not exceed 
one (see, [4,5,21] and the references cited therein). Furthermore, the spectral radius of 
the adjacency matrix of an infectious disease system is the key threshold to control its 
behavior, since the smaller the spectral radius, the higher the rate at which the disease is 
eradicated through the network, as opposed to becoming an epidemic. An upper bound 
for the spectral radius gives a lower bound for the epidemic threshold and thus, if the 
effective spreading rate is below this lower bound, a safety region is determined in which 
the virus contamination is guaranteed to die out. The sharper the upper bound for the 
spectral radius, the less effort is spent to reduce the spreading rate below the lower bound 
(see, [6,13,19] and the references therein).

Let Mn(R) be the algebra of n × n real matrices. The spectral radius of A ∈ Mn(R)
is defined by the set

ρ(A) = max {|λ| : λ ∈ σ(A)} ,

where σ(A) denotes the set of eigenvalues of A, [12]. We refer to A = [aij ]ni,j=1 ∈ Mn(R)
as nonnegative, A ≥ 0 or positive, A > 0 accordingly, if it is entrywise nonnegative or 
positive respectively. We recall that a nonnegative matrix A ∈ Mn(R) is called irreducible
if and only if (In + A)n−1 > 0, where In denotes the n × n identity matrix.

The Perron–Frobenius theory concerns the existence of positive or nonnegative eigen-
values and eigenvectors of positive or nonnegative matrices [12,20]. Most notably, it is 
well-known that when A ≥ 0 is irreducible, ρ(A) is a positive and simple eigenvalue 
having a positive eigenvector. Beside to this, Frobenius also proved upper and lower 
bounds for the spectral radius of a nonnegative matrix involving its row sums, [10]. 
These results and other extensions have been widely investigated by other researchers 
in [1–4,8,9,15–18,24] and applied to several problems including stochastic processes [22], 
Markov chains [23], population models [14], and asynchronous parallel iterative methods 
[11], among others.

In this work, we contribute new sharper lower and upper bounds for the spectral radius 
of a nonnegative matrix expanding upon Frobenius’ bounds. Towards this, considering 
the i-th row sum ri(A) =

∑n
j=1 aij of A ≥ 0 to be a positive quantity for every i =

1, . . . , n, we define the i-th average (k+1)-row sum of A ≥ 0 for a positive integer k ≥ 1, 
as the ratio

w
(k+1)
i (A) = 1

ri(A)

n∑
j=1

aij

n∑
u=1

aju · · ·
n∑

p=1
avp

︸ ︷︷ ︸
rp(A) = 1

ri(A)

n∑
τ=1

a
(k)
iτ rτ (A), (1.1)
k times
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where a(k)
iτ denotes the (i, τ)-th element of Ak ∈ Mn(R). Note that the latter definition 

generalizes the associated quantities studied in [24,16,2] for k = 1, 2, 3, respectively, 
developing lower and upper bounds for ρ(A), while in [9] the corresponding bounds have 
been constructed using only the i-th row sum of A.

We are also interested in the largest diagonal and off-diagonal element of A ≥ 0,

μ = max
1≤i≤n

{aii} and ν = max
1≤i,j≤n

i�=j

{aij}, (1.2)

respectively, as well as its smallest diagonal and off-diagonal element,

s = min
1≤i≤n

{aii} and τ = min
1≤i,j≤n

i�=j

{aij}, (1.3)

respectively. Our approach also involves the positive quantities

q = min
1≤i,j≤n

{
rj(A)
ri(A) : ri(A) > 0

}
and b = max

1≤i,j≤n

{
rj(A)
ri(A) : ri(A) > 0

}
, (1.4)

which are interrelated, since

q = min1≤i,j≤n rj(A)
max1≤i,j≤n ri(A) = 1

max1≤i,j≤n rj(A)
min1≤i,j≤n ri(A)

= 1
max1≤i,j≤n

{
rj(A)
ri(A)

} = 1
b
.

The article is organized as follows: In Section 2, we generalize a classical Frobenius’ 
result to the k-th powers of a nonnegative matrix for any positive integer k ≥ 1, to derive 
new lower and upper bounds for the spectral radius of the matrix solely expressed by 
its average (k + 1)-row sums. For successive values of k, we form sequences with terms 
these bounds and examine their basic properties of monotonicity and convergence. In 
Section 3, we generalize the results in [2,9,16,24] to propose a new lower bound for the 
spectral radius of a nonnegative matrix in terms of its smallest diagonal and off-diagonal 
elements and its average (k + 1)-row sums. Based on these quantities, we construct 
another sequence of lower bounds with respect to k, which sharpen the associated bounds 
exploited in the previous section and give closer approximations to the spectral radius 
as k increases. Section 4 is devoted to an analogous methodology on a sequence of upper 
bounds whose terms admit a representation in the largest diagonal and off-diagonal 
elements of the matrix and its average (k + 1)-row sums. Certain conditions are stated 
under which the optimal approximation to the spectral radius is found among them, 
which constitutes a sharper formulae compared to the associated upper bound discussed 
in Section 2. In all the aforesaid bounds, we handle the cases of equality when the 
matrix is irreducible. Finally, various numerical examples are presented to confirm our 
theoretical findings and draw comparisons between the proposed bounds and the earlier 
formulae.
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2. Sequences of bounds for the spectral radius

In this section, we generalize the well-known Frobenius’ bounds for the spectral radius 
of a nonnegative matrix to propose new upper and lower bounds, which depend only on 
the average (k + 1)-row sums, as defined in (1.1) for a positive integer k ≥ 1. Moreover, 
we use these quantities to formulate a sequence of bounds with respect to k and examine 
its monotonicity and convergence properties.

We begin by stating the next lemma, which collects the two classical Frobenius’ bounds 
for the spectral radius of a nonnegative matrix, [10,12,20].

Lemma 2.1 (Frobenius’ bounds). Let A ∈ Mn(R), A ≥ 0.

(i) [20, Theorem 1.1] Let ri(A), i = 1, . . . , n be the i-th row sums of A, then

min
1≤i≤n

{ri(A)} ≤ ρ(A) ≤ max
1≤i≤n

{ri(A)} . (2.1)

If A is also irreducible, then either equality holds if and only if r1(A) = · · · = rn(A).
(ii) [12, Theorem 8.1.26] Let x ∈ Rn be a vector with positive components xi, i =

1, . . . , n, then

min
1≤i≤n

⎧⎨
⎩ 1

xi

n∑
j=1

aijxj

⎫⎬
⎭ ≤ ρ(A) ≤ max

1≤i≤n

⎧⎨
⎩ 1

xi

n∑
j=1

aijxj

⎫⎬
⎭ . (2.2)

If A is also irreducible, then either equality holds if and only if x is an eigenvector 
of A corresponding to ρ(A).

The next proposition can be viewed as a generalization of the result in Lemma 2.1 to 
the elements of the k-th power of a nonnegative matrix for any positive integer k ≥ 1.

Proposition 2.2 (Generalized Frobenius’ bounds). Let A ∈ Mn(R), A ≥ 0 and a vector 
x ∈ Rn with positive components xi, i = 1, . . . , n. Then, for a fixed integer k ≥ 1

min
1≤i≤n

⎧⎨
⎩ k

√√√√ 1
xi

n∑
j=1

a
(k)
ij xj

⎫⎬
⎭ ≤ ρ(A) ≤ max

1≤i≤n

⎧⎨
⎩ k

√√√√ 1
xi

n∑
j=1

a
(k)
ij xj

⎫⎬
⎭ . (2.3)

Moreover, if Ak is irreducible, then either equality holds if and only if x is an eigenvector 
of A corresponding to ρ(A).

Proof. Consider the diagonal matrix Q = diag(x1, x2, ..., xn) with xi > 0 for all i =
1, . . . , n, then Ã = Q−1AkQ =

[
x−1
i a

(k)
ij xj

]n
≥ 0. Applying Lemma 2.1 to Ã for any 
i,j=1
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k ≥ 1 and taking into account the similarity invariance property of the spectral radius, 
whereby ρ(Ã) = ρ(Q−1AkQ) = ρ(Ak), we obtain

min
1≤i≤n

{
ri(Ã)

}
≤ ρ(Ã) ≤ max

1≤i≤n

{
ri(Ã)

}

min
1≤i≤n

⎧⎨
⎩ 1

xi

n∑
j=1

a
(k)
ij xj

⎫⎬
⎭ ≤ ρ(Ak) ≤ max

1≤i≤n

⎧⎨
⎩ 1

xi

n∑
j=1

a
(k)
ij xj

⎫⎬
⎭ (2.4)

min
1≤i≤n

⎧⎨
⎩ k

√√√√ 1
xi

n∑
j=1

a
(k)
ij xj

⎫⎬
⎭ ≤ ρ(A) ≤ max

1≤i≤n

⎧⎨
⎩ k

√√√√ 1
xi

n∑
j=1

a
(k)
ij xj

⎫⎬
⎭ .

Moreover, if Ak ≥ 0 is irreducible, then A ≥ 0 is irreducible, as well. By Lemma 2.1, 
either equality occurs in (2.4) if and only if x > 0 is an eigenvector of Ak corresponding 
to ρ(Ak). Since the positive eigenvectors of Ak and A are unique up to a scalar multiple, 
x is an eigenvector of A corresponding to ρ(A). �

The next theorem follows naturally from the above generalized Frobenius’ bounds and 
involves the notion of the average (k + 1)-row sums of a nonnegative matrix, provided 
that all its row sums are positive. We remind that if A ≥ 0 is irreducible and there exists 
a permutation matrix P such that PAPT is partitioned in the form

⎡
⎢⎢⎢⎣

0 A12 0 · 0
0 0 A23 · 0
· · · · ·
0 · · 0 Aq−1,q

Aq1 0 · · 0

⎤
⎥⎥⎥⎦ , (2.5)

where all the diagonal blocks are square zero matrices, then it is called q-cyclic and the 
largest positive integer q for which A is q-cyclic is called the cyclic index of A. Thus, we 
are led to an extension of Lemma 2.3 in [2].

Theorem 2.3. Let A ∈ Mn(R), A ≥ 0 with all row sums positive and w(k+1)
i (A), i =

1, . . . , n, be the i-th average (k + 1)-row sum of A with k ≥ 1. Then

min
1≤i≤n

{
k

√
w

(k+1)
i (A)

}
≤ ρ(A) ≤ max

1≤i≤n

{
k

√
w

(k+1)
i (A)

}
. (2.6)

If A is also irreducible, then the following hold:

(i) If Ak is irreducible, then either equality holds if and only if the average 2-row sums 
are equal, i.e. w(2)

1 (A) = · · · = w
(2)
n (A).

(ii) If Ak is reducible, then either equality holds if and only if A is k-cyclic and 
w

(2)
j (A) = · · · = w

(2)
j (A), w(2)

j (A) = · · · = w
(2)
j (A), . . ., w(2)

j (A) =

1 n1 n1+1 n1+n2 n1+···+nk+1
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· · · = w
(2)
jn

(A), where the k sets of indices {j1, . . . , jn1}, {jn1+1, . . . , jn1+n2}, ..., 
{jn1+···+nk−1+1, . . . , jn} form a partition of {1, . . . , n} conforming to the block cyclic 
structure of A.

Proof. Plugging the components xi = ri(A) > 0, i = 1, . . . , n into (2.3), the quantity 
w

(k+1)
i (A) arises by the definition in (1.1) and thus, (2.6) is evident.
Moreover, let A be also irreducible. If Ak is irreducible, then either equality occurs 

in (2.3) if and only if x = [r1(A) . . . rn(A)]T > 0 is a positive eigenvector of A
corresponding to ρ(A), or equivalently, if and only if ρ(A) = 1

ri

∑n
j=1 aijrj(A) = w

(2)
i (A)

for all i = 1, . . . , n.
On the other hand, Theorem 3.4.5 in [7] asserts that Ak is reducible if and only if 

there exists a permutation matrix P such that PAkPT = C1 ⊕ · · · ⊕ Ck, with nonneg-
ative and irreducible block matrices Cj , j = 1, . . . , k. Consequently, ρ(A) = k

√
ρ(C1) =

· · · = k
√

ρ(Ck) and P conforms to a partition π = (π1, π2, . . . , πk) of {1, 2, . . . , n}, which 
describes the k-cyclic structure of PAPT as in the form (2.5). �
Remark 2.4. It is worth mentioning that:

(i) The first part of Theorem 2.3 can be also derived by [8, Corollary 2.4]. The definition 
of the i-th row sum of Ak+1 and Lemma 2.3 in [17] result in the formulation

n∑
j=1

aijrj(Ak) = ri(Ak+1) =
n∑

j=1
a
(k+1)
ij =

n∑
j=1

a
(k)
ij rj(A),

whereby the i-th average (k + 1)-row sum of A can be written

w
(k+1)
i (A) = 1

ri(A)

n∑
j=1

a
(k)
ij rj(A) = 1

ri(A)

n∑
j=1

a
(k+1)
ij = ri(Ak+1)

ri(A) . (2.7)

Now, the compound inequality in (2.6) stems from Corollary 2.4 in [8] setting k = 1
and L = k therein and using the expansion of w(k+1)

i (A) in (2.7).
(ii) The second part of Theorem 2.3 stated for irreducible matrices can be also achieved 

by taking Corollary 3.1 and Theorem 3.3 in [8].

Proposition 2.5. Let A ∈ Mn(R), A ≥ 0 with all row sums positive and w(k+1)
i (A) be 

the i-th average (k + 1)-row sum of A with k ≥ 1. If A has diagonal elements aii ≥ 1, 
i = 1, 2, . . . , n, then for a fixed index i the sequence 

{
w

(k+1)
i (A)

}
k≥1

is monotonically 

increasing. Otherwise, if 0 ≤ aii ≤ 1, i = 1, 2, . . . , n, then 
{
w

(k+1)
i (A)

}
k≥1

is monoto-
nically decreasing.
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Proof. Assume A ≥ 0 has diagonal elements aii ≥ 1 for all i = 1, 2, . . . , n. Since 
ri(Ak+1) ≤ aiiri(Ak+1) +

∑n
j=1,j �=i aijrj(Ak+1) =

∑n
j=1 aijrj(Ak+1), employing Re-

mark 2.4 for a fixed index i and for any k ≥ 1 arises

w
(k+1)
i (A) = ri(Ak+1)

ri(A) ≤ 1
ri(A)

n∑
j=1

aijrj(Ak+1) = 1
ri(A)

n∑
j=1

a
(k+1)
ij rj(A) = w

(k+2)
i (A).

Thus, the monotonicity is verified. If 0 ≤ aii ≤ 1, i = 1, 2, . . . , n, the opposite mono-
tonicity of 

{
w

(k)
i (A)

}
k≥1

is evident. �

For a given nonnegative matrix and fixed positive components xi, i = 1, . . . , n, the 

quantities k

√
1
xi

∑n
j=1 a

(k)
ij xj depend only on k, so we regard the sequence:

⎧⎨
⎩ k

√√√√ 1
xi

n∑
j=1

a
(k)
ij xj : xi > 0, i = 1, . . . , n

⎫⎬
⎭

k≥1

.

The proximity of the terms of the latter sequence to the spectral radius is explored in the 
following result, giving an additional approximation beyond the generalized Frobenius’ 
bounds in Proposition 2.2.

Theorem 2.6. Let A ∈ Mn(R), A ≥ 0 have a positive eigenvector. Then for any vector 
x ∈ Rn with positive components xi, i = 1, . . . , n,

ρ(A) = lim
k→∞

k

√√√√ 1
xi

n∑
j=1

a
(k)
ij xj . (2.8)

Proof. Consider Ã = Q−1AQ, where Q = diag(x1, x2, . . . , xn) > 0. If v ∈ Rn is a positive 
eigenvector of A corresponding to λ ∈ σ(A), then ṽ = Q−1v is a positive eigenvector of 
Ã corresponding to λ ∈ σ(Ã). Using [12, Corollary 8.1.33], the row sums of the matrix 

Ãk = Q−1AkQ =
[
x−1
i a

(k)
ij xj

]n
i,j=1

=
[
ã
(k)
ij

]n
i,j=1

satisfy the inequalities

min1≤m≤n {ṽm}
max1≤m≤n {ṽm}ρ(Ã)k ≤

n∑
j=1

ã
(k)
ij ≤ max1≤m≤n {ṽm}

min1≤m≤n {ṽm} ρ(Ã)k

ρ(Ã) k

√
min1≤m≤n {ṽm}
max1≤m≤n {ṽm} ≤ k

√√√√ n∑
j=1

ã
(k)
ij ≤ ρ(Ã) k

√
max1≤m≤n {ṽm}
min1≤m≤n {ṽm}
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for all i = 1, . . . , n. Both sides of the latter inequality converge to the spectral radius 

ρ(Ã) = ρ(A) as k → ∞, since ṽ > 0 and lim
k→∞

k

√√√√√ min
1≤m≤n

{ṽm}

max
1≤m≤n

{ṽm} = lim
k→∞

k

√√√√√ max
1≤m≤n

{ṽm}

min
1≤m≤n

{ṽm} =

1. Therefore, by the squeeze theorem, we obtain the desired limit in (2.8). �
We present a variant of Theorem 2.6 involving the notion of the average (k + 1)-row 

sums of a nonnegative matrix.

Proposition 2.7. Let A ∈ Mn(R), A ≥ 0 with all row sums positive and w(k+1)
i (A), 

i = 1, . . . , n, be the i-th average (k + 1)-row sum of A with k ≥ 1. If A has a positive 
eigenvector, then

ρ(A) = lim
k→∞

k

√
w

(k+1)
i (A), for any i = 1, . . . , n. (2.9)

Proof. Setting xi = ri(A) > 0 for all i = 1, . . . , n into (2.8), the i-th average (k+ 1)-row 
sum w(k+1)

i (A) defined by (1.1) arises and the desired limit follows naturally. �
Proposition 2.8. Let A ∈ Mn(R), A ≥ 0 with all row sums positive and w(k+1)

i (A), 
i = 1, . . . , n, be the i-th average (k + 1)-row sum of A with k ≥ 1. Then the sequence {

max
1≤i≤n

{
k

√
w

(k+1)
i (A)

}}
k≥1

possesses a monotonically decreasing subsequence

{
max

1≤i≤n

{
bk
√
w

(bk+1)
i (A)

}}
k≥1

,

for any fixed positive integer b.

Proof. The upper bound assertion in (2.3) is related to the maximum row sum matrix 
norm by

ρ(A) ≤ k

√√√√√ max
1≤i≤n

⎧⎨
⎩ 1

xi

n∑
j=1

a
(k)
ij xj

⎫⎬
⎭ = k

√
‖|Q−1AkQ‖|∞, (2.10)

where Q = diag(x1, x2, . . . , xn) > 0. Now, set xi = ri(A) > 0 in Q and denote Ã =
Q−1AQ. Due to (2.10) and the submultiplicative property of the maximum row sum 
norm, we obtain

|‖Ãbk+1 |‖∞ = |‖ÃbkÃbk · · · Ãbk︸ ︷︷ ︸
b times

|‖∞ ≤
(
|‖Ãbk |‖∞

)b
(
|‖Ãbk+1 |‖∞

) bk+1
bk+1 ≤

(
|‖Ãbk |‖∞

) bk+1
bk
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(
bk+1
√

|‖Ãbk+1 |‖∞
)bk+1

≤
(

bk
√

|‖Ãbk |‖∞
)bk+1

bk+1
√

|‖Ãbk+1 |‖∞ ≤ bk
√

|‖Ãbk |‖∞

and the assertion is complete. �
3. A lower bound for the spectral radius of nonnegative matrices

In this section, we propose a lower bound for the spectral radius of a nonnegative 
matrix A involving its lowest quantities s, τ given in (1.3) and its average (k + 1)-row 
sums defined in (1.1), which constitutes a sharper bound compared to (2.6) for k ≥ 1. 
The proposed lower bound generalizes the associated expressions encountered in [24,16,2]
for k = 1, 2, 3, respectively.

In the subsequent analysis, we assume the average (k + 1)-row sums to be arranged 
so that

w
(k+1)
1 (A) ≥ w

(k+1)
2 (A) ≥ · · · ≥ w(k+1)

n (A). (3.1)

We commence our study with an auxiliary result that will be used in the sequel to prove 
our formulae.

Proposition 3.1. Let B(x, y) ∈ Mn(R), B(x, y) ≥ 0 be defined by

B(x, y) = (x− y)In + yJn 	= 0, (3.2)

where In denotes the n × n identity matrix and Jn denotes an n × n matrix with all 
elements equal to 1. Then

Bk(x, y) = (β(k)
1 (x, y) − β

(k)
2 (x, y))In + β

(k)
2 (x, y)Jn, (3.3)

where

β
(k)
1 (x, y) = 1

n

(
(x + (n− 1)y)k + (n− 1)(x− y)k

)
, (3.4)

β
(k)
2 (x, y) = 1

n

(
(x + (n− 1)y)k − (x− y)k

)
. (3.5)

Let A ∈ Mn(R), A ≥ 0, then

0 ≤ Bk(s, τ) ≤ Ak ≤ Bk(μ, ν), (3.6)

where μ, ν and s, τ are the extreme elements of A as defined by (1.2) and (1.3), respec-
tively. Either equality holds only if A = B(μ, ν) or A = B(s, τ).
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Proof. From (3.2) it is obvious that B(x, y) ≥ 0, B(x, y) 	= 0 is a symmetric matrix with 
characteristic polynomial

χB(x,y)(λ) = (λ− x− (n− 1)y)(λ− x + y)n−1. (3.7)

The eigenspaces of B(x, y) associated to the real eigenvalues λ1(x, y) = x + (n − 1)y
and λ2(x, y) = x − y are E1 = span

{[
1 1 . . . 1

]T} ⊆ Mn,1(R) and E2 =
span

{[
1 −1 0 0 . . . 0

]T , 
[
1 0 −1 0 . . . 0

]T , . . . , 
[
1 0 0 . . . 0 

−1
]T} ⊆ Mn,1(R), respectively. For k ≥ 1 the spectral decomposition of B(x, y) yields

Bk(x, y) = V Dk(x, y)V −1, (3.8)

where D(x, y) = diag(λ1(x, y), λ2(x, y), . . . , λ2(x, y)) ∈ Mn(R) and V =
[
v1 v2 · · ·

vn
]
∈ Mn(R) with v1 ∈ E1 and v2, . . . , vn ∈ E2.

By (3.8) the elements of Bk(x, y) can be readily computed; the diagonal elements 
b
(k)
ii (x, y), 1 ≤ i ≤ n, are given by

b
(k)
ii (x, y) = 1

n
λk

1(x, y) + n− 1
n

λk
2(x, y) = 1

n

(
(x + (n− 1)y)k + (n− 1)(x− y)k

)
and the off-diagonal elements b(k)

ij (x, y), 1 ≤ i, j ≤ n, i 	= j, are given by

b
(k)
ij (x, y) = 1

n
λk

1(x, y) − 1
n
λk

2(x, y) = 1
n

(
(x + (n− 1)y)k − (x− y)k

)
.

Notice that the above formulas for the elements of Bk(x, y) yield (3.4) and (3.5) by 
setting β(k)

1 (x, y) ≡ b
(k)
ii (x, y) and β(k)

2 (x, y) ≡ b
(k)
ij (x, y), respectively, verifying (3.3).

Now consider any matrix A ≥ 0, whose largest diagonal and off-diagonal elements 
are μ, ν and smallest diagonal and off-diagonal elements are s, τ . Plugging the pairs 
(x, y) = (μ, ν) and (x, y) = (s, τ) into (3.2), the inequality B(s, τ) ≤ A ≤ B(μ, ν) arises, 
which implies the inequality for the powers of the matrices [12], i.e., for k ≥ 1 holds

0 ≤ Bk(s, τ) ≤ Ak ≤ Bk(μ, ν),

completing the proof of (3.6). Clearly, either equality holds only if A = B(μ, ν) or 
A = B(s, τ). �

Before we state and prove our main results, we note that for reasons of notational 
convenience throughout the proofs of our results and whenever there is no confusion of 
which matrix we refer to, we omit the dependency on A, that is, we set ri = ri(A) and 
w

(k+1)
i = w

(k+1)
i (A) for 1 ≤ i ≤ n.

In the subsequent theorem a new lower bound for the spectral radius is proposed, 
which depends on the smallest elements s, τ of A ≥ 0 and on its n-th average row sum 
w

(k+1)
n (A).
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Theorem 3.2. Let A ∈ Mn(R), A ≥ 0 with all row sums positive and average (k+1)-row 
sums w(k+1)

i (A), i = 1, . . . , n be arranged as in (3.1). Assuming

w(k+1)
n (A) > δ = β

(k)
1 (s, τ) − qβ

(k)
2 (s, τ), (3.9)

with s, τ the smallest diagonal and off-diagonal elements of A as in (1.3) and q, β(k)
1 (s, τ), 

β
(k)
2 (s, τ) as defined in (1.4), (3.4), (3.5), respectively, let

z(k+1)
n = 1

2

(
w(k+1)

n (A) + δ +
√

Δn

)
, (3.10)

where

Δn = (w(k+1)
n (A) − δ)2 + 4qβ(k)

2 (s, τ))
n−1∑
j=1

(w(k+1)
j (A) − w(k+1)

n (A)). (3.11)

Then,

k

√
z
(k+1)
n ≤ ρ(A). (3.12)

Proof. If τ = 0, (3.5) results in β(k)
2 (s, τ) = 0. Thus, (3.10) reduces to

z(k+1)
n = 1

2

(
w(k+1)

n + δ +
√

(w(k+1)
n − δ)2

)
= w(k+1)

n ,

due to the assumption w(k+1)
n > δ. Consequently, (3.12) arises straightforwardly by 

Theorem 2.3. In what follows we assume τ > 0.
Let the n × n diagonal matrix

U = diag(r1, . . . , rn−1, rn) diag(x1, . . . , xn−1, 1) = RX.

The diagonal elements xj , j = 1, . . . , n −1 of X will be constructed later so that X ≥ In
and in this case we have U > 0. Next, we perform the following matrix manipulations 
on Ã = U−1AkU ≥ 0 after adding and subtracting the nonnegative matrix R−1AkR,

Ã = X−1(R−1AkRX) = X−1(R−1AkR + R−1AkRX −R−1AkR)

= X−1(R−1AkR + R−1AkR(X − In)). (3.13)

The left-sided inequality Ak ≥ Bk(s, τ) = (β(k)
1 (s, τ) − β

(k)
2 (s, τ))In + β

(k)
2 (s, τ)Jn in 

(3.6) applied to (3.13) infers

Ã ≥ X−1(R−1AkR + R−1Bk(s, τ)R(X − In))

= X−1(R−1AkR + (β(k)
1 (s, τ) − β

(k)
2 (s, τ))(X − In) + β

(k)
2 (s, τ)R−1JnR(X − In))

≥ X−1(R−1AkR + δ(X − In) + qβ
(k)
2 (s, τ)Jn(X − In)), (3.14)
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since R−1JnR ≥ (1 − q)In + qJn, q is given by (1.4) and δ = β
(k)
1 (s, τ) − qβ

(k)
2 (s, τ) by 

(3.9). Noticing that ri(R−1AkR) = w
(k+1)
i , i = 1, . . . , n, inequality (3.14) yields

ri(Ã) ≥ 1
xi

(
w

(k+1)
i + δ(xi − 1) + qβ

(k)
2 (s, τ)

n−1∑
j=1

(xj − 1)
)
, 1 ≤ i ≤ n− 1 (3.15)

rn(Ã) ≥ w(k+1)
n + qβ

(k)
2 (s, τ)

n−1∑
j=1

(xj − 1). (3.16)

Now, observe that the quadratic equation

(z(k+1)
n )2 − (w(k+1)

n + δ)z(k+1)
n + δw(k+1)

n − qβ
(k)
2 (s, τ)

n−1∑
j=1

(w(k+1)
j − w(k+1)

n ) = 0(3.17)

has only real roots, since its discriminant

Δn ≡ (w(k+1)
n + δ)2 − 4

(
δw(k+1)

n − qβ
(k)
2 (s, τ)

n−1∑
j=1

(w(k+1)
j − w(k+1)

n )
)

= (w(k+1)
n − δ)2 + 4qβ(k)

2 (s, τ)
n−1∑
j=1

(w(k+1)
j − w(k+1)

n )

is a positive number, due to w(k+1)
n > δ, q > 0, β(k)

2 (s, τ) ≥ 0 and the arrangement of {
w

(k+1)
i

}n
i=1

in descending order as in (3.1). Hence, a positive real root to (3.17) is

z(k+1)
n = 1

2

(
w(k+1)

n + δ +
√

Δn

)
, (3.18)

which is used in the determination of

xj = 1 +
w

(k+1)
j − w

(k+1)
n

z
(k+1)
n − δ

⇔ xj − 1 =
w

(k+1)
j − w

(k+1)
n

z
(k+1)
n − δ

, 1 ≤ j ≤ n− 1. (3.19)

Suppose first that 
∑n−1

j=1 (w(k+1)
j − w

(k+1)
n ) > 0, then it is clear by (3.18) that

z(k+1)
n >

1
2

(
w(k+1)

n + δ + |w(k+1)
n − δ|

)
≥ 1

2

(
w(k+1)

n + δ − (w(k+1)
n − δ)

)
= δ,

otherwise, w(k+1)
1 = · · · = w

(k+1)
n > δ and (3.18) yields

z(k+1)
n = 1

2

(
w(k+1)

n + δ + |w(k+1)
n − δ|

)
>

1
2

(
w(k+1)

n + δ − (w(k+1)
n − δ)

)
= δ.

Overall, xj − 1 ≥ 0 in (3.19) are well defined. Moreover, from (3.17) we derive
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qβ
(k)
2 (s, τ)

n−1∑
j=1

(w(k+1)
j − w(k+1)

n ) = (z(k+1)
n )2 − (w(k+1)

n + δ)z(k+1)
n + δw(k+1)

n

= (z(k+1)
n − δ)(z(k+1)

n − w(k+1)
n ). (3.20)

For 1 ≤ i, j ≤ n − 1, we substitute xj − 1 ≥ 0 from (3.19) and the expression of 
qβ

(k)
2 (s, τ) 

∑n−1
j=1 (w(k+1)

j − w
(k+1)
n ) from (3.20) into (3.15) and (3.16) to deduce

ri(Ã) ≥ 1
xi

(
w

(k+1)
i + qβ

(k)
2 (s, τ)

n−1∑
j=1

(xj − 1) + δ(xi − 1)
)

= 1
xi

(
w

(k+1)
i + qβ

(k)
2 (s, τ)

n−1∑
j=1

w
(k+1)
j − w

(k+1)
n

z
(k+1)
n − δ

+ δ
w

(k+1)
i − w

(k+1)
n

z
(k+1)
n − δ

)

= 1
xi

(
w

(k+1)
i + (z(k+1)

n − δ)(z(k+1)
n − w

(k+1)
n )

z
(k+1)
n − δ

+ δ
w

(k+1)
i − w

(k+1)
n

z
(k+1)
n − δ

)

= w
(k+1)
i (z(k+1)

n − δ) + (z(k+1)
n − δ)(z(k+1)

n − w
(k+1)
n ) + δ(w(k+1)

i − w
(k+1)
n )

xi(z(k+1)
n − δ)

= (z(k+1)
n − δ)(z(k+1)

n + w
(k+1)
i − w

(k+1)
n ) + δ(w(k+1)

i − w
(k+1)
n )

xi(z(k+1)
n − δ)

= z
(k+1)
n (z(k+1)

n − δ) + z
(k+1)
n (w(k+1)

i − w
(k+1)
n )

xi(z(k+1)
n − δ)

= z
(k+1)
n (z(k+1)

n − δ + w
(k+1)
i − w

(k+1)
n )

xi(z(k+1)
n − δ)

= z
(k+1)
n (z(k+1)

n − δ + w
(k+1)
i − w

(k+1)
n )

z
(k+1)
n −δ+w

(k+1)
i −w

(k+1)
n

z
(k+1)
n −δ

(z(k+1)
n − δ)

= z(k+1)
n , (3.21)

and (3.16) yields

rn(Ã) ≥ w(k+1)
n + qβ

(k)
2 (s, τ)

n−1∑
j=1

w
(k+1)
j − w

(k+1)
n

z
(k+1)
n − δ

= w(k+1)
n + (z(k+1)

n − δ)(z(k+1)
n − w

(k+1)
n )

z
(k+1)
n − δ

= z(k+1)
n . (3.22)

Hence, both inequalities (3.21) and (3.22) confirm ri(Ã) ≥ z
(k+1)
n for all 1 ≤ i ≤ n. By 

Lemma 2.1 and the similarity of Ak and Ã, the validity of (3.12) is verified, since

ρ(A)k = ρ(Ak) = ρ(Ã) ≥ min
{
ri(Ã)

}
≥ z(k+1)

n . � (3.23)

1≤i≤n
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The following proposition characterizes necessary and sufficient conditions for which 
the equality part of Theorem 3.2 is attained.

Proposition 3.3. Let A ∈ Mn(R), A ≥ 0 be irreducible. Under the notations and as-

sumptions of Theorem 3.2, ρ(A) = k

√
z
(k+1)
n if and only if one of the following holds:

(i) If τ = 0, then w(2)
1 (A) = · · · = w

(2)
n (A), when Ak is irreducible. Otherwise, if 

Ak is reducible, then w(2)
j1

(A) = · · · = w
(2)
jn1

(A), w(2)
jn1+1

(A) = · · · = w
(2)
jn1+n2

(A), 
. . ., w(2)

jn1+···+nk−1+1
(A) = · · · = w

(2)
jn

(A), where the k sets of indices {j1, . . . , jn1}, 
{jn1+1, . . . , jn2}, . . ., {jn1+···+nk−1+1, . . . , jn} form a partition of {1, . . . , n} de-
scribing the block cyclic structure of A.

(ii) If τ > 0, then w(k+1)
1 (A) = · · · = w

(k+1)
n (A).

Proof. (i) If τ = 0, then ρ(A) = k

√
z
(k+1)
n = k

√
w

(k+1)
n (A) and the result is an immediate 

consequence of Theorem 2.3.

(ii) If τ > 0 suppose first that ρ(A) = k

√
z
(k+1)
n with irreducible A ≥ 0 and consider 

Ã = U−1AkU ≥ 0 with diagonal matrix U = RX > 0, as constructed in the proof of 
Theorem 3.2. We then distinguish among two cases:
(a) If Ak ≥ 0 is irreducible, then Ã is also irreducible. By (3.23), we have

z(k+1)
n ≤ min

1≤i≤n

{
ri(Ã)

}
≤ ρ(Ã) = ρ(A)k = z(k+1)

n

⇒ z(k+1)
n = min

1≤i≤n

{
ri(Ã)

}
= ρ(Ã).

By Lemma 2.1(i), r1(Ã) = · · · = rn(Ã) = z
(k+1)
n , then inequalities (3.21), (3.22) and thus, 

(3.15), (3.16) degenerate to equalities. If w(k+1)
1 (A) > w

(k+1)
n (A), we consider the smallest 

integer 2 ≤ t ≤ n such that w(k+1)
t (A) = w

(k+1)
n (A). Clearly, w(k+1)

i (A) > w
(k+1)
n (A) for 

integers 1 ≤ i ≤ t − 1, which imply xi > 1 in (3.19). In this case, the equalities in (3.15)
and (3.16) hold only if Ak = Bk(s, τ) in (3.6) and R−1JnR = (1 − q)In + qJn. Therefore, 
using the expression (2.7) and the elements of B(k+1)(s, τ) from (3.3), which are given 
by β(k+1)

1 (s, τ), β(k+1)
2 (s, τ) in (3.4), (3.5), we have

w
(k+1)
i (A) = w

(k+1)
i (B(s, τ)) = ri(Bk+1(s, τ))

ri(B(s, τ)) = (s + (n− 1)τ)k+1

s + (n− 1)τ = (s + (n− 1)τ)k,

for all i = 1, . . . , n.
(b) If Ak ≥ 0 is reducible and so is Ã, there is a permutation matrix P such that

PAkPT = C1 ⊕ · · · ⊕ Ck

with irreducible matrices Cj , j = 1, . . . , k and ρ(A) = k
√
ρ(Cj), [8]. Clearly,
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PÃPT = D−1(C1 ⊕ · · · ⊕ Ck)D = B1 ⊕ · · · ⊕Bk,

where D = PUPT is diagonal and Bj ≥ 0, j = 1, . . . , k are nj × nj irreducible matrices 
with ρ(Bj) = ρ(Cj). By Lemma 2.1

z(k+1)
n = ρ(Ak) = ρ(Ã) = ρ(Bj) ≥ min

1≤i≤nj

{ri(Bj)} ≥ min
1≤i≤n

{ri(Ã)} = z(k+1)
n

⇒ ρ(Bj) = min
1≤i≤nj

{ri(Bj)}

and since Bj ∈ Mnj
(R) are irrreducible for any j = 1, . . . , k, we have r1(Bj) = · · · =

rnj
(Bj) = z

(k+1)
n for any j = 1, . . . , k. Due to permutational similarity, r1(Ã) = · · · =

rn(Ã) = z
(k+1)
n and (3.15), (3.16) are equalities. Following the same arguments as in (a), 

we conclude w(k+1)
1 (A) = · · · = w

(k+1)
n (A).

Conversely, suppose w(k+1)
1 (A) = · · · = w

(k+1)
n (A). Then by (3.10)

k

√
z
(k+1)
n = k

√
w

(k+1)
n (A) = min

1≤i≤n

{
k

√
w

(k+1)
i (A)

}
= max

1≤i≤n

{
k

√
w

(k+1)
i (A)

}
= ρ(A),

due to Theorem 2.3 and thus, the proof is complete. �
At this point, it is natural to inquire whether the lower bound 

k

√
z
(k+1)
n constructed in 

Theorem 3.2 is tighter over the average (k+1)-row sum k

√
w

(k+1)
n (A), which also bounds 

from below the spectral radius, as argued in Theorem 2.3. This question is addressed 

in Proposition 3.4, which in fact reveals that k

√
z
(k+1)
n improves k

√
w

(k+1)
n (A) for each 

k ≥ 1.

Proposition 3.4. Let A ∈ Mn(R), A ≥ 0. Suppose the notations and assumptions of 
Theorem 3.2, then

k

√
w

(k+1)
n (A) ≤ k

√
z
(k+1)
n ≤ ρ(A). (3.24)

Moreover, if A has a positive eigenvector, then ρ(A) = limk→∞
k

√
z
(k+1)
n .

Proof. For any positive integer k ≥ 1 we have

4qβ(k)
2 (s, τ)

n−1∑
j=1

(w(k+1)
j − w(k+1)

n ) ≥ 0,

due to q > 0, β(k)
2 (s, τ) ≥ 0 and the arrangement of 

{
w

(k+1)
i

}n
i=1

in descending order as 

in (3.1). Therefore, the above discussion and the hypothesis w(k+1)
n > δ deduce
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z(k+1)
n ≥ 1

2

(
w(k+1)

n + δ +
√

(w(k+1)
n − δ)2

)
= w(k+1)

n .

The validity of (3.24) is apparent from the latter inequality and (3.12). If we further as-
sume that A has a positive eigenvector, then by Proposition 2.7 and the squeeze theorem 

we obtain ρ(A) = limk→∞
k

√
z
(k+1)
n , completing the proof. �

In the subsequent example we verify our findings and we compare the lower bounds 
for the spectral radius in [1,2,4,9,16,24] with the proposed one in Theorem 3.2 for various 
values of k. Moreover, for reasons of completeness, we include the classical Frobenius’ 
bounds in Lemma 2.1. The arguments of Proposition 3.4 are confirmed, since Theo-
rem 3.2 gives closer approximations to the spectral radius for any k ≥ 1 in comparison 
to Theorem 2.3.

Example 3.5. Consider the matrix A =

⎡
⎢⎣

3 1 2 1
1 3 1 1
1 1 2 2
1 1 1 2

⎤
⎥⎦ in [16] with s = 2, τ = 1 and 

spectral radius ρ(A) = 6. Ensuring the assumptions (3.1) and (3.9) of Theorem 3.2, for 
each k ∈ {1, 2, 3, 4, 5, 10, 20, 30} and computing the associated quantities w(k+1)

4 (A) and 
z
(k+1)
4 from (1.1) and (3.10), we evaluate the lower bounds given by (2.6) and (3.12), 

respectively. The quantities k

√
z
(k+1)
4 for the first three values of k coincide with the lower 

bounds in [24, Theorem 2.3], [16, Theorem 2.3] and [2, Theorem 3.1], in which the ave-
rage 2-row, average 3-row and average 4-row sums are used, respectively. The remaining 
values of k refer to the new expression given in (3.12). For reasons of comparison we 
also present Frobenius’ lower bound in (2.1) as well as the ones in [4, Theorem 7], [1, 
Theorem 10] and [9, Theorem 2.2].

In Table 1 we list all the above values to compare among them and illustrate their 
performance. As one may observe, Proposition 3.4 is confirmed and k

√
z
(k+1)
4 , k ≥ 5 reach 

much closer to the spectral radius rather than the other formulae. Now, in Fig. 1 we draw 

the first 10 terms (left) and the first 30 terms (right) of k

√
w

(k+1)
4 (A) and k

√
z
(k+1)
4 to 

exhibit their convergence behavior. Since A > 0, the assumptions of Propositions 2.7 and 
3.4 are guaranteed by Perron’s theorem [12, Theorem 8.2.11], and thus we can indeed 
confirm that both sequences converge to the exact spectral radius represented by a solid 
line as k increases.

4. Upper bounds for the spectral radius of nonnegative matrices

In the current section, we develop upper bounds for the spectral radius of a non-
negative matrix in terms of its greatest quantities μ, ν given in (1.2) and its average 
(k + 1)-row sums arranged in descending order as in (3.1). In addition, we provide the 
conditions under which the bound is optimal, in the sense that it is the superior among 
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Table 1
Numerical comparison of lower bounds for the spectral radius, ρ(A).

Reference k Lower Bounds k

√
w

(k+1)
4 (A) k

√
z
(k+1)
4

Frobenius (2.1) 5.0000
[4, Theorem 7] 5.0000
[1, Theorem 10] 5.7970
[9, Theorem 2.2] 5.8284
[24, Theorem 2.3] 1 5.8000 5.9110
[16, Theorem 2.3] 2 5.8822 5.9380
[2, Theorem 3.1] 3 5.9193 5.9513
Theorem 3.2 4 5.9391 5.9593
Theorem 3.2 5 5.9512 5.9646
Theorem 3.2 10 5.9756 5.9782
Theorem 3.2 20 5.9878 5.9880
Theorem 3.2 30 5.9918 5.9919

ρ(A) = 6.0000

Fig. 1. Lower bounds for ρ(A) consisting of 10 terms (left) and 30 terms (right).

the upper bounds proposed herein and the associated one in Theorem 2.3. The estimates 
constructed extend the ones encountered in [24,16,2] for k = 1, 2, 3, respectively.

As was laid out in Section 3, for brevity of notation throughout the proofs, we omit 
the dependency on A, that is, we set ri = ri(A) and w(k+1)

i = w
(k+1)
i (A) for 1 ≤ i ≤ n.

Theorem 4.1. Let A ∈ Mn(R), A ≥ 0 with all row sums positive and average (k+1)-row 
sums w(k+1)

i (A), i = 1, . . . , n be arranged as in (3.1). Denote

γ = β
(k)
1 (μ, ν) − bβ

(k)
2 (μ, ν), (4.1)

with μ, ν the largest diagonal and off-diagonal elements of A with ν > 0 in (1.2) and b, 
β

(k)
1 (μ, ν), β(k)

2 (μ, ν) defined in (1.4), (3.4), (3.5), respectively. Assuming w(k+1)
1 (A) ≥ γ, 

when b = 1, and w(k+1)
1 (A) > γ, when b > 1, let

Z
(k+1)
� = 1 (

w
(k+1)
� (A) + γ +

√
Δ�

)
, � = 1, . . . , n, (4.2)
2
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where

Δ� = (w(k+1)
� (A) − γ)2 + 4bβ(k)

2 (μ, ν)
�−1∑
j=1

(w(k+1)
j (A) − w

(k+1)
� (A)). (4.3)

Then,

ρ(A) ≤ min
{

k

√
Z

(k+1)
� : 1 ≤ � ≤ n

}
. (4.4)

Proof. Consider � = 1, then the assumption w(k+1)
1 ≥ γ in (4.2) leads to Z(k+1)

1 = w
(k+1)
1

and the result arises straightforwardly by Theorem 2.3.
Consider 2 ≤ � ≤ n. If b = 1, then r1 = · · · = rn ⇒ w

(k+1)
1 = · · · = w

(k+1)
n . 

Therefore, Z(k+1)
� = w

(k+1)
� = w

(k+1)
1 for all � = 2, . . . , n and Proposition (2.6) implies 

ρ(A) = k

√
w

(k+1)
1 = k

√
Z

(k+1)
� . On the other hand, if b > 1, let the n ×n diagonal matrix

U = diag(r1, . . . , r�−1, r�, . . . , rn) diag(x1, . . . , x�−1, 1, . . . , 1) = RX,

in which the diagonal elements xj ≥ 1, j = 1, . . . , � − 1 will be determined later and let 
Ã = U−1AkU ≥ 0. Analogously to the matrix manipulations in (3.13), we have

Ã = X−1(R−1AkR + R−1AkR(X − In)). (4.5)

The right-sided inequality Ak ≤ Bk(μ, ν) = (β(k)
1 (μ, ν) − β

(k)
2 (μ, ν))In + β

(k)
2 (μ, ν)Jn in 

(3.6) applied to (4.5) infers

Ã ≤ X−1(R−1AkR + R−1Bk(μ, ν)R(X − In))

= X−1(R−1AkR + β
(k)
2 (μ, ν)R−1JnR(X − In) + (β(k)

1 (μ, ν) − β
(k)
2 (μ, ν))(X − In))

≤ X−1(R−1AkR + bβ
(k)
2 (μ, ν)Jn(X − In) + γ(X − In)), (4.6)

since R−1JnR ≤ (1 − b)In + bJn, and γ = β
(k)
1 (μ, ν) − bβ

(k)
2 (μ, ν). Noticing that 

ri(R−1AkR) = w
(k+1)
i , i = 1, . . . , n, and w(k+1)

i ≤ w
(k+1)
� for i = �, . . . , n, inequality 

(4.6) yields

ri(Ã) ≤ 1
xi

(
w

(k+1)
i + bβ

(k)
2 (μ, ν)

�−1∑
j=1

(xj − 1) + γ(xi − 1)
)

(4.7)

for 1 ≤ i ≤ � − 1 and

ri(Ã) ≤ w
(k+1)
i + bβ

(k)
2 (μ, ν)

�−1∑
j=1

(xj − 1) ≤ w
(k+1)
� + bβ

(k)
2 (μ, ν)

�−1∑
j=1

(xj − 1) (4.8)
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for � ≤ i ≤ n. Now, we are going to determine the entries xj of X for j = 1, 2, . . . , � − 1
and � = 2, . . . , n by considering the quadratic equations

(
Z

(k+1)
�

)2 − (w(k+1)
� + γ)Z(k+1)

� + γw
(k+1)
� − bβ

(k)
2 (μ, ν)

�−1∑
j=1

(w(k+1)
j −w

(k+1)
� ) = 0 (4.9)

with discriminant

Δ� ≡
(
w

(k+1)
� + γ

)2 − 4
(
γw

(k+1)
� − bβ

(k)
2 (μ, ν)

�−1∑
j=1

(w(k+1)
j − w

(k+1)
� )

)

= (w(k+1)
� − γ)2 + 4bβ(k)

2 (μ, ν)
�−1∑
j=1

(w(k+1)
j − w

(k+1)
� ).

Due to the hypothesis w(k+1)
1 (A) > γ, when b > 1, β(k)

2 (μ, ν) ≥ 0 and the decreasing 

arrangement of the nonnegative numbers 
{
w

(k+1)
i

}n
i=1

, the discriminant Δ� is positive 

for all � = 2, . . . , n, which yields that the quadratic equations in (4.9) have a positive 
root

Z
(k+1)
� = 1

2

(
w

(k+1)
� + γ +

√
Δ�

)
, � = 2, . . . , n. (4.10)

For 1 ≤ j ≤ � − 1, we set

xj = 1 +
w

(k+1)
j − w

(k+1)
�

Z
(k+1)
� − γ

⇔ xj − 1 =
w

(k+1)
j − w

(k+1)
�

Z
(k+1)
� − γ

, (4.11)

where Z(k+1)
� are given by (4.10). Suppose first that 

∑�−1
j=1(w

(k+1)
j − w

(k+1)
� ) > 0, then 

it is clear by relation (4.10) that

Z
(k+1)
� >

1
2

(
w

(k+1)
� + γ + |w(k+1)

� − γ|
)
≥ 1

2

(
w

(k+1)
� + γ − (w(k+1)

� − γ)
)

= γ,

otherwise, w(k+1)
1 = · · · = w

(k+1)
� > γ and (4.10) yields

Z
(k+1)
� = 1

2

(
w

(k+1)
� + γ + |w(k+1)

� − γ|
)

= w
(k+1)
� = w

(k+1)
1 > γ.

Both cases ensure xj − 1 ≥ 0 and xj in (4.11) are well defined. Moreover, by (4.9), we 
may write

bβ
(k)
2 (μ, ν)

�−1∑
(w(k+1)

j − w
(k+1)
� ) = (Z(k+1)

� − γ)(Z(k+1)
� − w

(k+1)
� ). (4.12)
j=1
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For 1 ≤ i, j ≤ � − 1, we substitute xj − 1 ≥ 0 from (4.11) and the expression of 
bβ

(k)
2 (μ, ν) 

∑�−1
j=1(w

(k+1)
j − w

(k+1)
� ) from (4.12) into the inequality (4.7) to deduce

ri(Ã) ≤ 1
xi

(
w

(k+1)
i + bβ

(k)
2 (μ, ν)

�−1∑
j=1

(xj − 1) + γ(xi − 1)
)

= 1
xi

(
w

(k+1)
i + bβ

(k)
2 (μ, ν)

�−1∑
j=1

w
(k+1)
j − w

(k+1)
�

Z
(k+1)
� − γ

+ γ
wi − w�

Z
(k+1)
� − γ

)

= 1
xi

(
w

(k+1)
i +

(Z(k+1)
� − γ)(Z(k+1)

� − w
(k+1)
� )

Z
(k+1)
� − γ

+ γ
w

(k+1)
i − w

(k+1)
�

Z
(k+1)
� − γ

)

=
w

(k+1)
i (Z(k+1)

� − γ) + (Z(k+1)
� − γ)(Z(k+1)

� − w
(k+1)
� ) + γ(w(k+1)

i − w
(k+1)
� )

xi(Z(k+1)
� − γ)

=
(Z(k+1)

� − γ)Z(k+1)
� + (w(k+1)

i − w
(k+1)
� )(Z(k+1)

� − γ + γ)
xi(Z(k+1)

� − γ)

=
(Z(k+1)

� − γ)Z(k+1)
� + (w(k+1)

i − w
(k+1)
� )Z(k+1)

�

Z
(k+1)
� −γ+w

(k+1)
i −w

(k+1)
�

Z
(k+1)
� −γ

(Z(k+1)
� − γ)

= Z
(k+1)
� , � = 2, . . . , n.

(4.13)

Similarly, for � ≤ i ≤ n and 1 ≤ j ≤ � − 1 the inequality (4.8) can be written as

ri(Ã) ≤ w
(k+1)
� + bβ

(k)
2 (μ, ν)

�−1∑
j=1

(xj − 1) = w
(k+1)
� + bβ

(k)
2 (μ, ν)

Z
(k+1)
� − γ

�−1∑
j=1

(w(k+1)
j − w

(k+1)
� )

= w
(k+1)
� +

(Z(k+1)
� − γ)(Z(k+1)

� − w
(k+1)
� )

Z
(k+1)
� − γ

= Z
(k+1)
� . (4.14)

Thus, for 2 ≤ � ≤ n and 1 ≤ i ≤ n the inequalities (4.13) and (4.14) verify ri(Ã) ≤
Z

(k+1)
� . By Lemma 2.1 and the similarity of Ak and Ã, we obtain

ρ(A)k = ρ(Ak) = ρ(Ã) ≤ max
1≤i≤n

{
ri(Ã)

}
≤ Z

(k+1)
� .

Thereby, the desired upper bound in (4.4) is achieved. �
The next proposition establishes necessary and sufficient conditions for equality to 

occur in (4.4) of Theorem 4.1. We omit the proof, since it is in a similar fashion as the 
one of Proposition 3.3.
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Proposition 4.2. Let A ∈ Mn(R), A ≥ 0 be irreducible. Under the notations and as-
sumptions of Theorem 4.1, if we further assume b > 1, then ρ(A) = k

√
Z

(k+1)
� , for some 

� = 1, . . . , n if and only if one of the following statements holds:

(i) For � = 1, w(2)
1 (A) = · · · = w

(2)
n (A), when Ak is irreducible. Otherwise, if Ak

is reducible, then w(2)
j1

(A) = · · · = w
(2)
jn1

(A), w(2)
jn1+1

(A) = · · · = w
(2)
jn1+n2

(A), 
. . ., w(2)

jn1+···+nk+1
(A) = · · · = w

(2)
jn

(A), where the k sets of indices {j1, . . . , jn1}, 
{jn1+1, . . . , jn2}, . . ., {jn1+···+nk−1+1, . . . , jn} form a partition of {1, . . . , n} de-
scribing the block cyclic structure of A.

(ii) For � = 2, . . . , n, w(k+1)
1 (A) = · · · = w

(k+1)
n (A).

Proposition 4.3. Let A ∈ Mn(R), A ≥ 0 with all row sums positive and average (k+ 1)-
row sums w(k+1)

i (A), i = 1, . . . , n, be arranged as in (3.1). Suppose the notations and 
assumptions of Theorem 4.1 and

w(k+1)
n (A) > γ = β

(k)
1 (μ, ν) − bβ

(k)
2 (μ, ν). (4.15)

Then

k

√
w

(k+1)
� (A) ≤ k

√
Z

(k+1)
� , � = 1, . . . , n. (4.16)

Proof. According to (4.2), we have Z(k+1)
1 = w

(k+1)
1 for any k ≥ 1. Moreover,

4bβ(k)
2 (μ, ν)

�−1∑
j=1

(
w

(k+1)
j − w

(k+1)
�

)
≥ 0,

due to b > 0, β(k)
2 (s, τ) ≥ 0 and the arrangement of 

{
w

(k+1)
j

}n
j=1

as in (3.1). Now, for 
� = 2, 3, . . . , n the latter inequality and the assumption (4.15) imply

Z
(k+1)
� = 1

2

(
w

(k+1)
� + γ +

√
Δ�

)
≥ 1

2

(
w

(k+1)
� + γ + w

(k+1)
� − γ

)
= w

(k+1)
� .

Consequently, (4.16) arises. �
Now, for a fixed k ≥ 1 and � = 1, . . . , n, the positive quantities k

√
Z

(k+1)
� do not 

necessarily increase or decrease. In the next theorem we investigate the arrangement 
pattern of these quantities with respect to � and identify the smallest index at which the 
minimum value is attained.

Theorem 4.4. Let A ∈ Mn(R), A ≥ 0 with A 	= B(μ, ν), B(μ, ν) be defined in (3.2). 
Suppose the notations and assumptions of Theorem 4.1, then
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min
1≤�≤n

k

√
Z

(k+1)
� = k

√
Z

(k+1)
t , (4.17)

where

t = min
{
� :

�∑
j=1

w
(k+1)
j (A) < �2bβ

(k)
2 (μ, ν) + �γ and

w
(k+1)
� (A) < �bβ

(k)
2 (μ, ν) + γ, 1 ≤ � ≤ n

}
. (4.18)

Proof. According to (4.3), we derive

Δ�+1 − Δ� =
(
w

(k+1)
� − w

(k+1)
�+1

)(
2γ + 4b�β(k)

2 (μ, ν) − w
(k+1)
� − w

(k+1)
�+1

)
(4.19)

for 1 ≤ � ≤ n. It is clear that if w(k+1)
� = w

(k+1)
�+1 , then k

√
Z

(k+1)
� = k

√
Z

(k+1)
�+1 , whereas 

the converse does not hold. Hence, we assert that k

√
Z

(k+1)
� ≤ k

√
Z

(k+1)
�+1 if and only if

w
(k+1)
� − w

(k+1)
�+1 +

√
Δ� ≤

√
Δ�+1 ⇔(

w
(k+1)
� − w

(k+1)
�+1

)2
+ 2
(
w

(k+1)
� − w

(k+1)
�+1

)√
Δ� + Δ� ≤ Δ�+1.

After some calculations and taking into account the ordering w(k+1)
� > w

(k+1)
�+1 along with 

(4.2) and (4.19), we deduce

w
(k+1)
� − w

(k+1)
�+1 + 2

√
Δ� ≤ 2γ + 4b�β(k)

2 (μ, ν) − w
(k+1)
� − w

(k+1)
�+1 ⇔

0 <
√

Δ� ≤ −w
(k+1)
� + γ + 2b�β(k)

2 (μ, ν). (4.20)

By assumption, the right part of (4.20) is a nonnegative quantity, then we can square 
both sides and conclude

(w(k+1)
� − γ)2 + 4bβ(k)

2 (μ, ν)
�−1∑
j=1

(w(k+1)
j − w

(k+1)
� ) ≤

(
2b�β(k)

2 (μ, ν) − (w(k+1)
� − γ)

)2
⇔

�−1∑
j=1

w
(k+1)
j − (�− 1)w(k+1)

� ≤ b�2β
(k)
2 (μ, ν) − �(w(k+1)

� − γ) ⇔

�∑
j=1

w
(k+1)
j ≤ �2bβ

(k)
2 (μ, ν) + �γ.

Thus, if 
∑�

j=1 w
(k+1)
j ≥ �

(
�bβ

(k)
2 (μ, ν) + γ

)
, then k

√
Z

(k+1)
� ≥ k

√
Z

(k+1)
�+1 , and in the case ∑�

j=1 w
(k+1)
j ≤ �

(
�bβ

(k)
2 (μ, ν) + γ

)
, then k

√
Z

(k+1)
� ≤ k

√
Z

(k+1)
�+1 .
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Let 1 ≤ t ≤ n be the smallest integer such that 
∑t

j=1 w
(k+1)
j < t2bβ

(k)
2 (μ, ν) + tγ. 

For 1 ≤ � ≤ t − 1, we have by the choice of t that 
∑�

j=1 w
(k+1)
j ≥ �2bβ

(k)
2 (μ, ν) + �γ

and thus, k

√
Z

(k+1)
� ≥ k

√
Z

(k+1)
t . We will prove by induction with respect to � that for 

t ≤ � ≤ n −1, the strict inequality 
∑�

j=1 w
(k+1)
j < �2bβ

(k)
2 (μ, ν) + �γ holds. The assertion 

holds trivially for � = t by our choice of t. Suppose that it holds for t ≤ � ≤ n − 2. Then 
w

(k+1)
�+1 ≤ w

(k+1)
� < �bβ

(k)
2 (μ, ν) + γ, and hence, by the induction hypothesis,

�+1∑
j=1

w
(k+1)
j < �

(
�bβ

(k)
2 (μ, ν) + γ

)
+
(
�bβ

(k)
2 (μ, ν) + γ

)
< (� + 1)

(
(� + 1)bβ(k)

2 (μ, ν) + γ
)
.

Furthermore, the requirement A 	= B(μ, ν) with B(μ, ν) as defined in (3.2), implies ∑n
j=1 w

(k+1)
j < n

(
nbβ

(k)
2 (μ, ν) + γ

)
and the assertion (4.17) is established. �

Remark 4.5. It is interesting to outline the following observations coming from Theo-
rem 4.4 relatively to the upper bounds suggested in Theorems 2.3 and 4.1.

(i) In the occurrence t = 1 in Theorem 4.4, note that the equation (4.18) reduces to 
the condition w(k+1)

1 (A) < β
(k)
1 (μ, ν) and the upper bound is

min
1≤�≤n

{
k

√
Z

(k+1)
�

}
= k

√
Z

(k+1)
1 = k

√
w

(k+1)
1 (A), (4.21)

in which the second equation is explained at the beginning of the proof of The-
orem 4.1. In this situation, the largest value of the average (k + 1)-row sums is 
superior and there is no point in calculating the other expressions of upper bounds 
k

√
Z

(k+1)
� , for � = 2, . . . , n given by (4.2).

(ii) On the other hand, whenever t 	= 1 in Theorem 4.4, we have

min
1≤�≤n

{
k

√
Z

(k+1)
�

}
<

k

√
Z

(k+1)
1 = k

√
w

(k+1)
1 (A). (4.22)

It is notable then that Theorem 4.1 is a refinement for any k ≥ 1 and the upper 
bound suggested in (4.4) is superior to the corresponding one stated in the right 
inequality (2.6).

The forthcoming proposition can be derived directly by combining the relation (4.21)
and Proposition 2.7.

Proposition 4.6. Let A ∈ Mn(R), A ≥ 0 with A 	= B(μ, ν), B(μ, ν) be defined in (3.2)
and A have a positive eigenvector. Suppose the notations and assumptions of Theorem 4.1
and w(k+1)

1 (A) < β
(k)
1 (μ, ν), then
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ρ(A) = lim
k→∞

k

√
Z

(k+1)
1 . (4.23)

The numerical example below serves to illustrate the efficiency of our proposed upper 
bounds comparing among the existing formulae in [1,2,4,9,16,24] and Frobenius’ bounds 
in Lemma 2.1, for the purpose of completeness. In addition, we identify the minimum 

index t at which k

√
Z

(k+1)
t attains the minimum value and consists the tighter upper 

bound for the spectral radius, as argued in Theorem 4.4. Numerical evidence of the 
observations in Remark 4.5 is also provided as well as the value of k above which the 
upper bound for the spectral radius is identical to the maximum average (k + 1)-row 
sum in (2.6).

Example 4.7. Consider the positive matrix B =

⎡
⎢⎣

3 2 3 3
2 2 2 3
3 2 3 1
3 3 3 2

⎤
⎥⎦ with maximal elements 

μ = ν = 3 and spectral radius ρ(B) = 10. To meet the assumptions of Theorem 4.1, we 
properly arrange w(k+1)

� (B), 1 ≤ � ≤ 4 as in (3.1) and ensure w(k+1)
1 (B) > γ, with γ in 

(4.1), for each value of k ∈ {1, 2, 3, 4, 5, 10, 20, 30}. Then we compute the upper bounds 

w
(k+1)
1 (B) and 

{
k

√
Z

(k+1)
�

}4

�=1
given by (2.6) and (4.4), respectively. Clearly, k

√
Z

(k+1)
�

reduce to the upper bounds in [24, Theorem 2.1], [16, Theorem 2.1] and [2, Theorem 2.4]
for k = 1, 2, 3, respectively, while the remaining values of k refer to the proposed upper 
bounds in Theorem 4.1. For comparisons, we also provide Frobenius’ bounds in (2.1), [4, 
Theorem 9], [1, Theorem 4] and [9, Theorem 2.1].

In order to verify the preceding comment in Remark 4.5, we summarize the per-
formance of all upper bounds for ρ(B) in Table 2. The upper bound k

√
Z

(k+1)
t =

min1≤�≤4

{
k

√
Z

(k+1)
�

}
is highlighted in bold and the index t is specified in the last 

column. Clearly, k

√
Z

(k+1)
1 = k

√
w

(k+1)
1 (B). As observed, for k = 1, . . . , 7, the values of 

k

√
Z

(k+1)
� appear first to decrease and then to increase with respect to �, which means 

that t 	= 1 and we need to calculate them all so as to determine the lowest value. On the 

other hand, once k = 5 and beyond, k

√
Z

(k+1)
� increase for 1 ≤ � ≤ 4 and thus, t = 1.

In pursuit of a visual investigation of the convergence behavior of 
{

k

√
w

(k+1)
1 (B)

}30

k=1

and 
{

k

√
Z

(k+1)
t

}30

k=1
, we display their graphs at the left part of Fig. 2 by blue “stars” and 

red “diamonds”, respectively. Based on these graphs, we can observe that as k increases 
both sequences reach very close to the solid line, which represents the spectral radius. 
Thereby, the limits in (2.9) and (4.23) are indeed confirmed, since, by Perron-Frobenius, 
B > 0 has a positive eigenvector.
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Table 2
Numerical comparison of upper bounds for the spectral radius, ρ(B).

Reference k Bounds k

√
w

(k+1)
1 ≡ k

√
Z

(k+1)
1

k

√
Z

(k+1)
2

k

√
Z

(k+1)
3

k

√
Z

(k+1)
4 t

Frobenius (2.1) 11.0000
[4, Theorem 9] 11.0000
[1, Theorem 4] 10.2143
[9, Theorem 2.1] 10.1789
[24, Theorem 2.1] 1 10.1111 10.0978 10.0405 10.0411 3
[16, Theorem 2.1] 2 10.0499 10.0445 10.0290 10.0310 3
[2, Theorem 2.4] 3 10.0336 10.0304 10.0280 10.0306 3
Theorem 4.1 4 10.0252 10.0232 10.0283 10.0313 2
Theorem 4.1 5 10.0201 10.0189 10.0293 10.0328 2
Theorem 4.1 6 10.0168 10.0161 10.0308 10.0346 2
Theorem 4.1 7 10.0144 10.0141 10.0325 10.0367 2
Theorem 4.1 8 10.0126 10.0127 10.0345 10.0391 1
Theorem 4.1 20 10.0050 10.0075 10.0557 10.0635 1
Theorem 4.1 30 10.0034 10.0058 10.0519 10.0592 1

ρ(B) = 10.0000

Fig. 2. Upper bounds for ρ(B) (left) and ρ(C) (right) consisting of 30 terms. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Example 4.8. Consider the nonnegative and irreducible matrix C =

⎡
⎢⎢⎢⎣

2 1 3 3 2
3 0 1 1 3
1 3 0 3 1
3 3 3 0 3
1 2 2 3 0

⎤
⎥⎥⎥⎦

with μ = 2, ν = 3 and spectral radius ρ(C) = 9.4769. Analogously to Example 4.7, we 
compute all upper bounds and index t and report them in Table 3. Moreover, the right 

part of Fig. 2 displays the graphs of 
{

k

√
w

(k+1)
1 (C)

}30

k=1
and 

{
k

√
Z

(k+1)
t

}30

k=1
by blue 

“stars” and red “diamonds”, respectively. Notice that the limits in (2.9) and (4.23) also 
hold here.
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Table 3
Numerical comparison of upper bounds for the spectral radius, ρ(C).

Reference k Bounds k

√
Z

(k+1)
1

k

√
Z

(k+1)
2

k

√
Z

(k+1)
3

k

√
Z

(k+1)
4

k

√
Z

(k+1)
5 t

Frobenius (2.1) 12.0000
[4, Theorem 9] 12.0000
[1, Theorem 4] 10.3263
[9, Theorem 2.1] 9.9226
[24, Theorem 2.1] 1 9.8750 9.8750 9.8108 9.8119 10.1742 3
[16, Theorem 2.1] 2 9.6112 9.5928 9.5936 9.6104 9.8950 2
[2, Theorem 2.4] 3 9.5729 9.5716 9.5828 9.6161 9.9460 2
Theorem 4.1 4 9.5384 9.5382 9.5414 9.5902 9.9363 2
Theorem 4.1 5 9.5277 9.5277 9.5392 9.5925 9.9582 1
Theorem 4.1 10 9.5021 9.5026 9.5160 9.5799 9.9667 1
Theorem 4.1 20 9.4895 9.4898 9.4982 9.5378 9.7824 1
Theorem 4.1 30 9.4853 9.4855 9.4911 9.5176 9.6807 1

ρ(C) = 9.4769
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