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1. Introduction

Researchers from the field of theoretical physics implemented several methodologies 
to resolve problems arising in quantum error correction. The main effort was to eliminate 
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the error factors created during transmission of quantum information and to describe 
possible corruption induced in the quantum system. Motivated by a physical problem, 
Choi et al. in their pioneering articles [7–9], reduced this problem to a purely mathemat-
ical introducing the notion of higher rank numerical ranges, and triggering the interest 
of many authors leading to an extensive literature [1,2,16,17,21].

Let Mm,n(C) (resp., Mm,n(R)) denote the set of all m × n complex (resp., real) 
matrices, with the notation Mn,n(C) abbreviated further to Mn(C).

For a positive integer 1 ≤ k ≤ n, the rank-k numerical range of A ∈ Mn(C) is defined 
and denoted by

Λk(A) = {λ ∈ C : PAP = λP for some rank k orthogonal projection P}.

Note that the rank-1 numerical range coincides with the classical numerical range [15]

Λ1(A) ≡ F (A) = {x∗Ax : x ∈ C
n, x∗x = 1} .

The latter set encompasses all the eigenvalues of matrix A, that is the spectrum σ(A) =
{λ ∈ C : det(λI −A) = 0}.

The higher rank numerical ranges {Λk(A)}k≥1 form a decreasing sequence of compact 
sets, due to the inclusion relations

Λ1(A) ⊇ Λ2(A) ⊇ · · · ⊇ Λk(A)

and they further enjoy a number of basic algebraic and geometric properties [7,8,16]:

(P1) Λk(aA + bI) = aΛk(A) + b, for any a, b ∈ C.
(P2) Λk(U∗AU) = Λk(A), for any unitary U ∈ Mn(C).
(P3) Λk(A) ⊆ Λk(H(A)) + iΛk(S(A)), where H(A) = (A + A∗)/2 and S(A) =

(A − A∗)/2i are the Hermitian and skew-Hermitian parts of matrix A, respec-
tively.

(P4) Λk(A1 ⊕A2) ⊇ Λk(A1) ∪Λk(A2), where the symbol ⊕ stands for the direct sum 
of matrices A1, A2 ∈ Mn(C).

(P5) Λk1+k2(A1 ⊕A2) ⊇ Λk1(A1) ∩ Λk2(A2), for any k1, k2 ∈ {1, . . . , n}.
(P6) If n ≥ 3k − 2, then Λk(A) �= ∅. On the other hand, Λn(A) �= ∅ precisely when 

A = λIn.

For any 1 ≤ k ≤ n, Λk(A) are convex sets (see [21]). Specifically, they coincide with the 
intersection of half-planes

Λk(A) =
⋂

θ∈[0,2π)

e−iθ{z ∈ C : Rez ≤ λk(Hθ(A))}, (1.1)

where λk(·) denotes the k-th largest eigenvalue of a matrix and Hθ(A) = H(eiθA) (see 
[17]). In case of a normal matrix A with spectrum σ(A) = {λ1, . . . , λn}, the expression 
(1.1) yields the intersection of the convex hulls (polygons)
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Λk(A) =
⋂

1≤j1<···<jn−k+1≤n

conv
{
λj1 , . . . , λjn−k+1

}
. (1.2)

If A is hermitian with non-increasingly ordered (real) eigenvalues, then (1.2) further 
reduces to the line segment [λn−k+1, λk].

The goal of this article is to explicitly determine the rank-k numerical range of tridi-
agonal Toeplitz matrices with special structure appearing in applications. In Section 2, 
we investigate the rank-k numerical range of the direct sum of 2 × 2 matrices with 
fixed diagonal elements. The result obtained is used to extend an elliptical numerical 
range statement from [4] to an elliptical rank-k numerical range theorem for tridiagonal 
Toeplitz matrices with periodic entries along their diagonals. Finally, Section 3 addresses 
the rank-k numerical range of tridiagonal and s-tridiagonal Toeplitz matrices.

2. Direct sum of special 2 × 2 matrices

We start this section studying the rank-k numerical range of the direct sum of 2 × 2
matrices with fixed diagonal elements. This result will help us generalize the elliptical 
numerical range theorem for some special matrices elaborated in [4] to the elliptical 
rank-k numerical range.

Theorem 1. Let A ∈ Mn(C) be unitarily equivalent to the direct sum

cIn−2r ⊕A1 ⊕ · · · ⊕Ar, (2.1)

where c ∈ {a1, a2} ⊆ C and Aj =
[
a1 sj
tj a2

]
∈ M2(C), j = 1, . . . , r, are not scalar 

matrices. If r < n
2 , then we obtain the following cases:

Λk(A) =

⎧⎪⎨⎪⎩
⋂

1≤j1<···<jr−k+1≤r conv
(
F (Aj1) ∪ · · · ∪ F (Ajr−k+1)

)
, k ≤ r

{c} , r < k ≤ n− r

∅, otherwise.

If r = n
2 , then

Λk(A) =
{ ⋂

1≤j1<···<jr−k+1≤r conv
(
F (Aj1) ∪ · · · ∪ F (Ajr−k+1)

)
, k ≤ r

∅, r < k ≤ n.

Proof. Due to the unitary invariance property (P2) of the rank-k numerical range, we 
may assume that A already is in the form (2.1).

Let r < n/2, then we will determine the rank-k numerical range by using the equality 
(1.1) and by computing the k-th largest eigenvalue λk(Hθ(A)) of the matrix Hθ(A) =
Re(eiθc)In−2r

⊕r
j=1 Hθ(Aj) for all values of integer k. It is readily verified that
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σ(Hθ(A)) =
{
Re(eiθc)

} r⋃
j=1

{λ1(Hθ(Aj)), λ2(Hθ(Aj))} ,

with

λ1(Hθ(Aj)) = 1
2Re(eiθ(a1 + a2)) + 1

2

√
(Re(eiθ(a1 − a2)))2 + |eiθsj + e−iθtj |2

and

λ2(Hθ(Aj)) = 1
2Re(eiθ(a1 + a2)) −

1
2

√
(Re(eiθ(a1 − a2)))2 + |eiθsj + e−iθtj |2.

Comparing the above eigenvalues, we have

λk(Hθ(A)) ∈

⎧⎪⎨⎪⎩
{λ1(Hθ(A1)), . . . , λ1(Hθ(Ar))} , k ≤ r{
Re(eiθc)

}
, r < k ≤ n− r

{λ2(Hθ(A1)), . . . , λ2(Hθ(Ar))} , n− r < k ≤ n.

At this point, we notice that for all θ ∈ [0, 2π) and by a suitable permutation πθ of the 
integers 1, . . . , r the above eigenvalues are ordered non-increasingly as follows

λ1(Hθ(Aπθ(1))) ≥ · · · ≥ λ1(Hθ(Aπθ(r))) ≥ λ2(Hθ(Aπθ(r))) ≥ · · · ≥ λ2(Hθ(Aπθ(1))).

Distinguishing among the values of k, we obtain the following cases:

i. Assume 1 ≤ k ≤ r. If we consider the r × r diagonal hermitian matrix Hr(θ) =
diag [λ1(Hθ(A1)), . . . , λ1(Hθ(Ar))] and any of its (r − k + 1) × (r − k + 1) principal 
submatrices Hr−k+1(θ), K. Fan and G. Pall’s generalized interlacing inequalities for 
hermitian matrices [12] imply

λk(Hr(θ)) ≤ λ1(Hr−k+1(θ)) ≤ λ1(Hr(θ)),

for any θ ∈ [0, 2π). Now, considering all 
(

r
k−1

)
principal submatrices Hr−k+1(θ) of 

Hr(θ), we have

λk(Hr(θ)) ≤ max
1≤j1<···<jr−k+1≤r

{λ1(Hθ(Aj1)), . . . , λ1(Hθ(Ajr−k+1))},

for any θ ∈ [0, 2π). Clearly, for any θ ∈ [0, 2π)

λk(Hθ(A)) = min max
1≤j1<···<jr−k+1≤r

{λ1(Hθ(Aj1)), . . . , λ1(Hθ(Ajr−k+1))}.

Hence, according to (1.1)

Λk(A) =
⋂

Λ1(Aj1 ⊕ · · · ⊕Ajr−k+1)

1≤j1<···<jr−k+1≤r
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=
⋂

1≤j1<···<jr−k+1≤r

conv
(
Λ1(Aj1) ∪ · · · ∪ Λ1(Ajr−k+1)

)
.

The Elliptical Range Theorem in [15] establishes that Λ1(Aj), j = 1, . . . , r are ellip-
tical disks all centered at a1+a2

2 . Apparently, the convex hulls of their union have a 
nonempty intersection over all r− k+ 1 selections from the collection of r numerical 
ranges Λ1(Aj), thus ensuring Λk(A) to be nonempty.

ii. Assume r + 1 ≤ k ≤ n − r. Then λk(Hθ(A)) = Re(eiθc) and by (1.1), Λk(A) = {c}.
iii. Assume n − r + 1 ≤ k ≤ n. Then λk(Hθ(A)) ≤ λ2(Hθ(Aj)), for any θ ∈ [0, 2π) and 

any index j ∈ {1, . . . , r}. By (1.1), we have Λk(A) ⊆ Λ2(Aj) = ∅, since Aj is not a 
scalar matrix.

In case r = n/2, we have A = A1 ⊕ · · · ⊕Ar and

λk(Hθ(A)) ∈
{

{λ1(Hθ(A1)), . . . , λ1(Hθ(Ar))} , k ≤ r

{λ2(Hθ(A1)), . . . , λ2(Hθ(Ar))} , r < k ≤ n.

Analogously to the discussion above, we derive the second assertion. �
Example 2. Let A ∈ M10(C) be the direct sum of the matrices

A1 =
[

2 6
−8 − 2i −

√
3

]
, A2 =

[
2 4.2
−i −

√
3

]
, A3 =

[
2 8

2 − 8i −
√

3

]
,

A4 =
[

2 2.1
−5 + i −

√
3

]
and A5 =

[
2 1
7 −

√
3

]
.

The set Λ1(A) coincides with the convex hull of the union F (A1) ∪ · · · ∪F (A5), hence 
we shall demonstrate the validity of Theorem 1 for Λk(A), k = 2, 3, 4, 5, respectively. 
Figs. 1(a), 1(c), 1(e), 1(g) depict the boundaries of numerical ranges of direct sums 
⊕γAγ over all index sets γ ⊆ {1, . . . , 5} of cardinality 6 −k for k = 2, 3, 4, 5, respectively. 
On the other hand, Figs. 1(b), 1(d), 1(f) and 1(h) illustrate the boundary and interior 
(white area) of Λk(A) for k = 2, 3, 4, 5, respectively, by using the formula (1.1) for 200 
tangent lines. Comparing our pictures, the corresponding sets are equal, thus confirming 
Theorem 1.

The following statement constitutes part of the proof of Theorem 2.1 in [4]. We state 
it here as a separate lemma for convenience of reference.

Lemma 3. Let X ∈ Mm,n(C) and Y ∈ Mn,m(C) be such that XY and Y X are normal 
matrices. Then for some unitary matrix U we have

U∗
[
a1Im X
Y a2In

]
U =

⎧⎪⎨⎪⎩
a1Im−n

⊕n
i=1 Aj , if m > n,

or
a I

⊕m
A , if m < n,
2 n−m i=1 j
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Fig. 1. The left figures illustrate the boundaries of F (⊕γAγ) over all index sets γ ⊆ {1, . . . , 5} of cardinality 
6 − k, for k = 2, 3, 4, 5, respectively. The corresponding intersections give Λk(A) at the right side for 
k = 2, 3, 4, 5, respectively.
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Fig. 1. (continued)

where Aj =
[
a1 sj
tj a2

]
∈ M2(C), s2

j ∈ σ(XX∗) and |tj |2 ∈ σ(Y Y ∗), for j =

1, . . . , min {m,n}.

From Lemma 3 and Theorem 1 we immediately obtain

Proposition 4. Let A ∈ Mn(C) be unitarily equivalent to the matrix

[
a1Ip X
Y a2Iq

]
∈ Mn(C), (2.2)

with XY and Y X normal matrices. If p �= q, then

Λk(A) =

⎧⎪⎨⎪⎩
⋂

1≤j1<···<jr−k+1≤r conv
(
F (Aj1) ∪ · · · ∪ F (Ajr−k+1)

)
, if k ≤ r := min{p, q},

{a1} or {a2} , if r < k ≤ n− r,

∅, otherwise,

where Aj =
[
a1 sj
tj a2

]
, with s2

j ∈ σ(XX∗), |tj |2 ∈ σ(Y Y ∗), j = 1, . . . , r.

If p = q := r, then

Λk(A) =
{ ⋂

1≤j1<···<jr−k+1≤r conv
(
F (Aj1) ∪ · · · ∪ F (Ajr−k+1)

)
, if k ≤ r,

∅, if r < k ≤ n.

Proof. Due to the unitary equivalence property (P2) of the rank-k numerical range, 
we may assume that A has already the form (2.2). Then the result is an immediate 
consequence of Theorem 1 and Lemma 3. �



M. Adam et al. / Linear Algebra and its Applications 549 (2018) 256–275 263
3. 2-Toeplitz matrices

A matrix is tridiagonal if its non-zero entries are all located on its main diagonal, the 
first diagonal below, and the first diagonal above the main one. A matrix is Toeplitz if 
its elements are constant along each descending diagonal. Therefore, matrices elements 
of which exhibit m-periodic behavior along diagonals are sometimes called m-Toeplitz.

In this section, we consider tridiagonal 2-Toeplitz matrices

Tn(b1, b2; a1, a2; c1, c2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1 0 · · · 0

b1 a2 c2
. . .

0 b2 a1 c1
...

b1 a2
. . . 0

...
. . . . . .

0 · · · 0
. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.1)

In case of tridiagonal truly Toeplitz n × n matrix this notation will be abbreviated to 
Tn(b, a, c). We also refer to the rectangular m ×n tridiagonal Toeplitz matrix Tm,n(b, a, c)
as it will be used in the discussion below.

Our study focuses on the rank-k numerical range of 2-Toeplitz matrices (3.1) under 
an additional condition on their off-diagonal elements. This condition is sufficient for 
the rank-k numerical range to be of an elliptical shape. Before stating the corresponding 
result, we formulate (and prove) an auxiliary lemma.

Lemma 5. Let the n ×n 2-Toeplitz matrix Tn(b1, b2; a1, a2; c1, c2) as in (3.1) be such that

b1/c1 = c2/b2 := μ. (3.2)

Then there exists a unitary matrix U satisfying

U∗Tn(b1, b2; a1, a2; c1, c2)U =

⎧⎪⎨⎪⎩
A1 ⊕ · · · ⊕Aρ, if n = 2ρ, ρ ∈ N,

or

a1I1 ⊕A1 ⊕ · · · ⊕Aρ, if n = 2ρ + 1, ρ ∈ N,

where Aj =
[

a1 sj
μsj a2

]
, j = 1, . . . , ρ and sj is the j-th largest singular value of either 

Tρ(b2, c1, 0), if n = 2ρ or Tρ+1,ρ(b2, c1, 0), if n = 2ρ + 1.

Proof. Let n = 2ρ, ρ ∈ N. We consider the n × n permutation matrix P =
[
P1
P2

]
, with 

the ρ × n matrices P1 =
[
e1 e3 . . . e2ρ−1

]T
and P2 =

[
e2 e4 . . . e2ρ

]T
, where 
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ej ∈ C
n is the j-th (column) vector of the standard basis of Cn. Applying P to the rows 

and columns of the matrix Tn(b1, b2; a1, a2; c1, c2) given by (3.1), we have

PTn(b1, b2; a1, a2; c1, c2)PT =
[
a1Iρ X

Y a2Iρ

]
,

where X = Tρ(b2, c1, 0) and Y = Tρ(0, b1, c2). From (3.2) it follows that Y = μX∗. The 
matrices XY = μXX∗ and Y X = μX∗X differ from positive semi-definite by a scalar 
multiple only, and thus are normal. By Proposition 4 there is a unitary matrix U such 
that

U∗
[
a1Iρ X
Y a2Iρ

]
U = A1 ⊕ · · · ⊕Aρ,

where Aj =
[

a1 sj
μsj a2

]
, j = 1, . . . , ρ with s1 ≥ s2 ≥ · · · ≥ sρ ≥ 0 the singular values 

of X.
The case when n is odd, i.e. n = 2ρ + 1, is treated in a similar setting by taking the 

(ρ + 1) × n matrix P1 =
[
e1 e3 · · · e2ρ−1 e2ρ

]T
and the ρ × n matrix P2. Hence,

PTn(b1, b2; a1, a2; c1, c2)PT =
[
a1Iρ+1 Z

W a2Iρ

]
,

where Z = Tρ+1,ρ(b2, c1, 0) and W = μZ∗. In this case, for some unitary matrix U , 
Proposition 4 yields

U∗
[
a1Iρ+1 Z
W a2Iρ

]
U = a1I1 ⊕A1 ⊕ · · · ⊕Aρ,

where Aj =
[

a1 sj
μsj a2

]
, j = 1, . . . , ρ with s1 ≥ s2 ≥ · · · ≥ sρ ≥ 0 the singular values 

of Z. �
Now, Lemma 5 and Proposition 4 imply the next theorem, which characterizes exactly 

the rank-k numerical range of a special tridiagonal 2-Toeplitz matrix.

Theorem 6. Let the n ×n 2-Toeplitz matrix Tn(b1, b2; a1, a2; c1, c2) given by (3.1) be such 
that b1b2 = c1c2. If k ≤ n/2, then Λk(Tn(b1, b2; a1, a2; c1, c2)) is an elliptical disk centered 
at (a1 + a2)/2, with major axis of length
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L =
(
|a1 − a2|2

2
+

2∑
j=1

(|bj |2 + |cj |2) + 2
2∑

i,j=1,i �=j

|bicj | cos
(

2kπ
n + 1

)
+

+

∣∣∣∣∣ (a1 − a2)2

2 + 2
2∑

j=1
bjcj + 4

∣∣∣∣b2c1
∣∣∣∣ b1c1 cos

(
2kπ
n + 1

)∣∣∣∣∣
)1/2

and minor axis of length

l =
(
|a1 − a2|2

2 +
2∑

j=1
(|bj |2 + |cj |2) + 2

2∑
i,j=1,i �=j

|bicj | cos
(

2kπ
n + 1

)
−

−

∣∣∣∣∣∣ (a1 − a2)2

2 + 2
2∑

j=1
bjcj + 4

∣∣∣∣∣b2c1
∣∣∣∣∣∣ b1c1 cos

(
2kπ
n + 1

)∣∣∣∣∣
)1/2

.

The major axis of the elliptical disk is parallel to the direction of the vector eiφ, where

φ = (arg d)/2 for d = (a1 − a2)2

4 +
2∑

j=1
bjcj + 2|b2|b1c1

|c1|
cos

(
2kπ
n + 1

)
.

If n = 2ρ + 1, ρ ∈ N, then Λρ+1(Tn(b1, b2; a1, a2; c1, c2)) = {a1}. For all other values 
of k, the rank-k numerical range is the empty set.

Proof. Let n = 2ρ, ρ ∈ N. The first cases of Lemma 5 and Proposition 4 imply that

Λk(Tn(b1, b2; a1, a2; c1, c2)) =
{ ⋂

1≤j1<···<jρ−k+1≤ρ F (Aj1 ⊕ · · · ⊕Ajρ−k+1), if k ≤ ρ,

∅, otherwise,
(3.3)

where Aj =
[

a1 sj
μsj a2

]
(j = 1, . . . , ρ), μ = b1

c1
= c2

b2
and s1 ≥ s2 ≥ · · · ≥ sρ ≥ 0 are the 

singular values of X = Tρ(b2, c1, 0). As argued in the proof of [4, Corollary 2.3],

F (A1) ⊇ F (A2) ⊇ · · · ⊇ F (Aρ) (3.4)

are elliptical disks centered at a1+a2
2 with major and minor axes of length

Lj =
(
|a1 − a2|2

2 + (1 + |μ|2)s2
j + 2

∣∣∣∣ (a1 − a2)2

4 + μs2
j

∣∣∣∣)1/2

and

lj =
(
|a1 − a2|2 + (1 + |μ|2)s2

j − 2
∣∣∣∣ (a1 − a2)2 + μs2

j

∣∣∣∣)1/2

,
2 4
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respectively, for j = 1, . . . , ρ. If k ≤ ρ, the formula (3.3) together with (3.4) imply

Λk(Tn(b1, b2; a1, a2; c1, c2)) = F (A1) ∩ F (A2) ∩ · · · ∩ F (Ak) = F (Ak).

Now, let us compute the k-th largest singular value sk of X. This is possible due to the 
structure of the ρ × ρ tridiagonal matrix

X∗X =

⎡⎢⎢⎢⎢⎣
|b2|2 + |c1|2 b2c1 0 0

b2c1
. . . . . . 0

0
. . . |b2|2 + |c1|2 b2c1

0 0 b2c1 |c1|2

⎤⎥⎥⎥⎥⎦ .

Indeed, the matrix X∗X is nothing but the tridiagonal Toeplitz matrix
Tρ(b2c1, |b2|2 + |c1|2, b2c1) with |b2|2 subtracted from its (ρ, ρ) entry.

The eigenvalues of such matrices have been analytically calculated in [13,18], where-
upon

s2
k = |b2|2 + |c1|2 + 2|b2c1| cos

(
2kπ
n + 1

)
.

Hence, our assertion is readily verified by the Elliptical Range Theorem [15].
The case n = 2ρ + 1, ρ ∈ N is treated in a similar setting by taking the second case 

of Lemma 5. Then Proposition 4 yields

Λk(Tn(b1, b2; a1, a2; c1, c2)) =

⎧⎪⎨⎪⎩
⋂

1≤j1<···<jρ−k+1≤ρ F (Aj1 ⊕ · · · ⊕Ajρ−k+1), k ≤ ρ,

{a1} , k = ρ + 1,
∅, otherwise,

where Aj =
[

a1 sj
μsj a2

]
, j = 1, . . . , ρ and sj ≥ 0 are the singular values of Z =

Tρ+1,ρ(b2, c1, 0) arranged in decreasing order. In the context of the previous arguments 
for even order n, we also obtain Λk(Tn(b1, b2; a1, a2; c1, c2)) = F (Ak), when k ≤ ρ. Then 
the k-th largest eigenvalue sk of the ρ × ρ tridiagonal Toeplitz matrix

Z∗Z = Tρ(b2c1, |b2|2 + |c1|2, b2c1)

is determined by s2
k = |b2|2 + |c1|2 + 2|b2c1| cos

(
2kπ
n+1

)
[13,18]. �

The significance of the conditions imposed in Theorem 6 is illustrated by the following 
example showing that the rank-k numerical range of an arbitrary tridiagonal 2-Toeplitz 
matrix is not always an elliptical disk.
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Fig. 2. Fig. 2(a) depicts Λk(T7(−i, −4i; 2 + i, 0; 4, 1)) for k = 1, . . . , 3 from outside inside, respectively and 
Fig. 2(b) depicts Λk(T7(i, −4i; 2 + i, 0; 4, 1)) for k = 1, . . . , 3. Furthermore, Λ4(T7(−i, −4i; 2 + i, 0; 4, 1)) =
Λ4(T7(i, −4i; 2 + i, 0; 4, 1)) = {2 + i}.

Example 7. We take the 7 × 7 2-Toeplitz matrix as in (3.1) with b1b2 = c1c2 = 4, that is

T7(−i,−4i; 2 + i, 0; 4, 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 + i 4 0 0 0 0 0
−i 0 1 0 0 0 0
0 −4i 2 + i 4 0 0 0
0 0 −i 0 1 0 0
0 0 0 −4i 2 + i 4 0
0 0 0 0 −i 0 1
0 0 0 0 0 −4i 2 + i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The elliptic curves in Fig. 2(a) depict the boundaries of Λ1(T7(−i, −4i; 2 +i, 0; 4, 1)) ⊇
Λ2(T7(−i, −4i; 2 + i, 0; 4, 1)) ⊇ Λ3(T7(−i, −4i; 2 + i, 0; 4, 1)) from outside inside, respec-
tively. Notice that Λ4(T7(−i, −4i; 2 + i, 0; 4, 1)) = {2 + i} is marked with a “star” and 
Λk(T7(−i, −4i; 2 + i, 0; 4, 1)) = ∅, for k = 5, 6.

If b1 = i, then the condition b1b2 = c1c2 does not hold and Λk(T7(i, −4i; 2 + i, 0; 4, 1))
fail to be elliptical disks for all k, as illustrated in Fig. 2(b).

We further restrict our previous result to an n ×n continuant matrix Tn(b1, b2; a1, a2;
−b1, −b2) [5,10]. This terminology comes from the well known relation between ratios 
of the determinant of nested continuant matrices and a continued fraction involving its 
nonzero entries:

detTn(b1, b2; a1, a2;−b1,−b2)
detTn−1(b2, b1; a2, a1;−b2,−b1)

= a1 + |b1|2

a2 + |b2|2

a1+ |b1|2
a2+···

.
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Proposition 8. Let Tn(b1, b2; a1, a2; −b1, −b2) be an n × n complex continuant matrix. If 
k ≤ n/2, then Λk(Tn(b1, b2; a1, a2; −b1, −b2)) is an elliptical disk centered at (a1 +a2)/2, 
major axis parallel to the vector eiφ of length

L =
(
|a1 − a2|2

2 + 2(|b1| − |b2|)2 + 8 |b1b2| cos2
(

kπ

n + 1

)

+
∣∣∣∣ (a1 − a2)2

2 − 2(|b1| − |b2|)2 − 8 |b1b2| cos2
(

kπ

n + 1

)∣∣∣∣)1/2

and minor axis of length

l =
(
|a1 − a2|2

2 + 2(|b1| − |b2|)2 + 8 |b1b2| cos2
(

kπ

n + 1

)

−
∣∣∣∣ (a1 − a2)2

2 − 2(|b1| − |b2|)2 − 8 |b1b2| cos2
(

kπ

n + 1

)∣∣∣∣)1/2

,

where

(a1 − a2)2

2 − 2(|b1| − |b2|)2 − 8 |b1b2| cos2
(

kπ

n + 1

)
= e2iφ

∣∣∣∣ (a1 − a2)2

2 − 2(|b1| − |b2|)2 − 8 |b1b2| cos2
(

kπ

n + 1

)∣∣∣∣ .
If n = 2ρ + 1, ρ ∈ N, then Λρ+1(Tn(b1, b2; a1, a2; −b1, −b2)) = {a1}. For all other values 
of k, the set is empty.

Proof. It is an immediate consequence of Theorem 6, replacing c1 = −b1, c2 = −b2 and 
taking into consideration the trigonometric identity

cos
(

2kπ
n + 1

)
= 2 cos2

(
kπ

n + 1

)
− 1. �

Proposition 9. Let Tn(b1, b2; a1, a2; −b1, −b2) be an n × n real continuant matrix. 
If k ≤ n/2, then Λk(Tn(b1, b2; a1, a2; −b1, −b2)) is an elliptical disk centered at 
(a1 + a2)/2, with horizontal axis of length |a1 − a2| and vertical axis of length 

2 
[
(b1 − b2)2 + 4|b1b2| cos2

(
kπ
n+1

)]1/2
.

If n = 2ρ +1, ρ ∈ Z, then Λρ+1(Tn(b1, b2; a1, a2; −b1, −b2)) degenerates to the singleton 
{a1}. All other values of k give an empty set.

Proof. Proposition 8 infers Λk(Tn(b1, b2; a1, a2; −b1, −b2)) to be an elliptical disk cen-
tered at (a1 + a2)/2. For its horizontal axis (φ = 0) we have
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∣∣∣∣ (a1 − a2)2

2 − 2(b1 − b2)2 − 8 |b1b2| cos2
(

kπ

n + 1

)∣∣∣∣
= (a1 − a2)2

2 − 2(b1 − b2)2 − 8 |b1b2| cos2
(

kπ

n + 1

)
.

Hence, L = |a1 − a2| is its horizontal axis length, while l = 2
[
(b1 − b2)2 +

4|b1b2| cos2
(

kπ
n+1

)]1/2 is its vertical axis length. �
The implications of Theorem 6 are also the same if we perform an interchange between 

the non diagonal elements b1, c1 or b2, c2 of Tn(b1, b2; a1, a2; c1, c2). In order to prove 
this statement, we need the following auxiliary lemma.

Lemma 10. The spectrum of any n ×n tridiagonal matrix is invariant under interchange 
of its (j, j + 1) and (j + 1, j) entries for any j = 1, . . . , n − 1.

Proof. Consider n × n tridiagonal matrices

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1 0 · · · 0

b1
. . . . . .

0
. . . aj cj

. . .
...

bj aj+1
...

. . . 0
. . . . . . cn−1

0 · · · 0 bn−1 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Ãn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1 0 . . . 0

b1
. . . . . .

0
. . . aj bj

. . .
...

cj aj+1
...

. . . 0
. . . . . . cn−1

0 · · · 0 bn−1 an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

the latter being obtained from the former by the interchange of its (j, j+1) and (j+1, j)
entries. Denote their characteristic polynomials by pn(x) = det(An − xIn) and p̃n(x) =
det(Ãn − xIn), respectively. There is a well known three term recurrence formula

p̃n(x) = anp̃n−1(x) − bn−1cn−1p̃n−2(x), (3.5)

where n ≥ 2 and p̃0(x) = 1 [6, Lemma 1]. For n = j + 1, we have
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p̃j+1(x) = aj+1p̃j(x) − bjcj p̃j−1(x)

= aj+1pj(x) − cjbjpj−1(x) = pj+1(x).

Clearly, applying the above equality in the recursion (3.5), we derive that p̃n(x) =
pn(x). �
Theorem 11. Let the n ×n 2-Toeplitz matrix Tn(b1, b2; a1, a2; c1, c2) given by (3.1) be such 
that b1c2 = c1b2. Then its rank-k numerical range is the same elliptical disk as described 
by Theorem 6.

Proof. Taking into consideration (1.1), we have

Λk(Tn(b1, b2; a1, a2; c1, c2))

=
⋂

θ∈[0,2π)

e−iθ{z ∈ C : Rez ≤ λk(Hθ(Tn(b1, b2; a1, a2; c1, c2)))},

where Tn(b1, b2; a1, a2; c1, c2) is a 2-Toeplitz matrix such that b1c2 = c1b2.
We notice that Hθ(Tn(b1, b2; a1, a2; c1, c2)) are tridiagonal matrices for any θ ∈ [0, 2π]). 

Lemma 10 yields that their spectrum remains unchanged after performing an interchange 
of corresponding off-diagonal elements. This fact assures the equality of the k-th largest 
eigenvalues as follows:

λk(Hθ(Tn(b1, b2; a1, a2; c1, c2))) = λk(Hθ(Tn(b1, c2; a1, a2; c1, b2))),

which leads to the equation b1b2 = c1c2. Hence, Theorem 6 implies the result. �
4. Tridiagonal and s-tridiagonal Toeplitz matrices

It is well known [11, Corollary 4] that the classical numerical range of a tridiagonal 
Toeplitz matrix Tn(b, a, c) coincides with an elliptical disk. Namely,

F (Tn(b, a, c)) =
{
bz + cz : z ∈ D

(
0, cos

(
π

n + 1

))}
+ {a} ,

where D
(
0, cos

(
π

n+1

))
denotes the circular disk centered at the origin and having radius 

cos
(

π
n+1

)
.

The spectrum of a tridiagonal Toeplitz matrix has been also calculated explicitly (see 
[3, Theorem 2.4] and also [14,20])

λj(Tn(b, a, c)) = a + 2(bc)1/2 cos
(

jπ
)
, j = 1, 2, . . . , n. (4.1)
n + 1
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Clearly, λj(Tn(b, a, c)) are simple eigenvalues of Tn(b, a, c) lying on the (complex) line 
segment

{
a + γei arg(b)+arg(c)

2 : −2
√
|bc| cos

(
π

n + 1

)
≤ γ ≤ 2

√
|bc| cos

(
π

n + 1

)}
,

and they are located symmetrically with respect to point a.
As it happens, the ellipticity property persists for the rank-k numerical range with 

k > 1.

Theorem 12. If k ≤ n/2, then the rank-k numerical range of an n ×n tridiagonal Toeplitz 
matrix Tn(b, a, c) is an elliptical disk centered at a, with major axis of length

L =
[
2(|b|2 + |c|2)

(
1 + cos

(
2kπ
n + 1

))
+ 4|bc|

∣∣∣∣1 + cos
(

2kπ
n + 1

)∣∣∣∣]1/2

and minor axis of length

l =
[
2(|b|2 + |c|2)

(
1 + cos

(
2kπ
n + 1

))
− 4|bc|

∣∣∣∣1 + cos
(

2kπ
n + 1

)∣∣∣∣]1/2

.

The major axis of the elliptical disk forms the angle arg(bc)/2 with the positive direction 
of the x-axis.

If n = 2ρ + 1, ρ ∈ N, then Λρ+1(Tn(b, a, c)) = {a}. For all other values of k, the set 
is empty.

Proof. Apparently, Tn(b, a, c) =Tn(b, b; a, a; c, c). By Theorems 6 and 11, Λk(Tn(b, a, c)) =
Λk(Tn(b, b; a, a; c, c)) = Λk(Tn(b, c; a, a; c, b)), and the result is immediate. �
Proposition 13. Let λ1(Tn(b, a, c)), . . . , λn(Tn(b, a, c)) be the eigenvalues of Tn(b, a, c) as 
in (4.1). Then λk(Tn(b, a, c)) and λn−k+1(Tn(b, a, c)) are the foci of the elliptical disk 
Λk(Tn(b, a, c)) (k ≤ n/2).

Proof. Without loss of generality, we can consider the matrix Tn = Tn(b, 0, c). The foci 
of the elliptical disk Λk(Tn) (k ≤ n/2) with respect to its major and minor axis length 
calculated in Theorem 12 are given by

|f |2 = L2 − l2

4 = 2 |bc|
(

1 + cos
(

2kπ
n + 1

))
= 4 |bc| cos2

(
kπ

n + 1

)
.

Then (4.1) along with the fact that the major axis of the elliptical disk forms the angle 
arg(bc)/2 with the positive direction of the x-axis, yield
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f1 = 2(bc)1/2 cos
(

kπ

n + 1

)
= λk(Tn) and

f2 = −2(bc)1/2 cos
(

kπ

n + 1

)
= λn−k+1(Tn). �

If we move the constant elements lying on the super and sub diagonals of an n × n

tridiagonal Toeplitz matrix to the s-th diagonal above and below the main diagonal, 
respectively, the result is a so called s-tridiagonal Toeplitz matrix denoted by T (s)

n (b, a, c)
(1 ≤ s ≤ n − 1). A straightforward example for s = 2 is

T (2)
n (b, a, c) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 0 c 0 · · · 0

0 a 0 c
. . .

...

b 0
. . . . . . . . . 0

0 b
. . . . . . 0 c

...
. . . . . . 0 a 0

0 · · · 0 b 0 a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.2)

Notice that 1-tridiagonal Toeplitz matrix T (1)
n (b, a, c) = Tn(b, a, c) is in fact a standard 

tridiagonal Toeplitz matrix.
The next result shows that the rank-k numerical range of an s-tridiagonal Toeplitz 

matrix is yet another elliptical disk.

Theorem 14. Let T (s)
n (b, a, c) be an s-tridiagonal Toeplitz matrix. Then

Λk(T (s)
n (b, a, c)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Λ	 k
s 
(Tρ(b, a, c)), if n = ρs, ρ ∈ N,

Λ	 k
s 


(Tρ+1(b, a, c)), if n = ρs + r and
(j − 1)s < k ≤ (j − 1)s + r, j = 1, . . . , ρ + 1,

Λ	 k
s 


(Tρ(b, a, c)), if n = ρs + r and
(j − 1)s + r < k ≤ js, j = 1, . . . , ρ,

where 
⌈
k
s

⌉
is the least integer greater than or equal to ks .

Proof. We will use the algorithm presented in [19] to represent the s-tridiagonal Toeplitz 
matrix T (s)

n (b, a, c) as permutationally similar to a direct sum of tridiagonal Toeplitz 
matrices.

Namely, for Sn = {1, 2, . . . , n} denote by

[r] = {z ∈ Sn : z ≡ r (mod s)} ,

its congruence classes modulo s.
Clearly, r ∈ {0, 1, . . . , s− 1} and if n ∈ [r], there exists an integer ρ such that 

n = ρs + r. It is readily verified that the cardinality of the classes |[1]| = |[2]| = · · · =
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|[r]| = ρ + 1 and |[0]| = |[r + 1]| = · · · = |[s − 1]| = ρ. Following [19], we take the n × n

permutation matrix

P = [es e2s · · · e1 es+1 e2s+1 · · · es−1 e2s−1 · · · ] ,

where ej is the j-th column vector of the standard basis. Hence, we have

PTT (s)
n (b, a, c)P = Tρ ⊕ Tρ+1 ⊕ · · · ⊕ Tρ+1︸ ︷︷ ︸

r-times

⊕Tρ ⊕ · · · ⊕ Tρ︸ ︷︷ ︸
(s−r−1)-times

,

where Tρ = Tρ(b, a, c). By the unitary invariance property (P2) of the rank-k numerical 
range and the relation (1.1), we derive that

Λk(T (s)
n (b, a, c)) = Λk

(
r⊕

i=1
Tρ+1

s−r⊕
i=1

Tρ

)

=
⋂

θ∈[0,2π)

e−iθ

{
z ∈ C : Rez ≤ λk

(
r⊕

i=1
Hθ(Tρ+1)

s−r⊕
i=1

Hθ(Tρ)
)}

.

(4.3)

Apparently, σ
(⊕r

i=1 Hθ(Tρ+1)
⊕s−r

i=1 Hθ(Tρ)
)

=
⋃r

i=1 σ(Hθ(Tρ+1)) 
⋃s−r

i=1 σ(Hθ(Tρ)). 
Notice also that the ρ ×ρ hermitian matrix Hθ(Tρ) is imbeddable in the (ρ +1) × (ρ +1)
hermitian matrix Hθ(Tρ+1). By [12, Theorem 1] and also taking into account the corre-
sponding multiplicities, we obtain

λ1(Hθ(Tρ+1)) = · · · = λ1(Hθ(Tρ+1))︸ ︷︷ ︸
r-times

≥

λ1(Hθ(Tρ)) = · · · = λ1(Hθ(Tρ))︸ ︷︷ ︸
(s−r)-times

≥

λ2(Hθ(Tρ+1)) = · · · = λ2(Hθ(Tρ+1))︸ ︷︷ ︸
r-times

≥

λ2(Hθ(Tρ)) = · · · = λ2(Hθ(Tρ))︸ ︷︷ ︸
(s−r)-times

≥

... ≥

λρ(Hθ(Tρ+1)) = · · · = λρ(Hθ(Tρ+1))︸ ︷︷ ︸
r-times

≥

λρ(Hθ(Tρ)) = · · · = λρ(Hθ(Tρ))︸ ︷︷ ︸ ≥ λρ+1(Hθ(Tρ+1)) = · · · = λρ+1(Hθ(Tρ+1))︸ ︷︷ ︸
r-times

.

(s−r)-times
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The above (in)equalities imply that

λk(Hθ(T (s)
n (b, a, c))) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1(Hθ(Tρ+1)), 1 ≤ k ≤ r

λ1(Hθ(Tρ)), r < k ≤ s

λ2(Hθ(Tρ+1)), s < k ≤ s + r

λ2(Hθ(Tρ)), s + r < k ≤ 2s
...

...
λρ(Hθ(Tρ+1)), (ρ− 1)s < k ≤ (ρ− 1)s + r

λρ(Hθ(Tρ)), (ρ− 1)s + r < k ≤ ρs

λρ+1(Hθ(Tρ+1)), ρs < k ≤ ρs + r.

Thus (4.3) results in

Λk(T (s)
n (b, a, c)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Λ	 k
s 


(Tρ(b, a, c)), if n = ρs, ρ ∈ N,
Λ	 k

s 

(Tρ+1(b, a, c)), if n = ρs + r and

(j − 1)s < k ≤ (j − 1)s + r, j = 1, . . . , ρ + 1,
Λ	 k

s 
(Tρ(b, a, c)), if n = ρs + r and
(j − 1)s + r < k ≤ js, j = 1, . . . , ρ.

Due to Theorem 12, Λk(T (s)
n (b, a, c)) is an elliptical disk. �

To illustrate, for the matrix given by (4.2), we have in particular:

Λk(T (2)
n (b, a, c)) =

⎧⎪⎨⎪⎩
Λ	 k

2 
(Tρ(b, a, c)), if n = 2ρ, ρ ∈ N,
Λ	 k

2 

(Tρ+1(b, a, c)), if n = 2ρ + 1 and k is odd,

Λ k
2
(Tρ(b, a, c)), if n = 2ρ + 1 and k is even.
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