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A B S T R A C T   

In this work we study the applicability of the steady state Kalman filter in order to predict new cases and deaths 
of Covid-19. We use the actual observations of new cases and deaths. First, we deal with short term prediction, 
namely daily prediction. We propose the use of the golden steady state Kalman Filter, which is designed to have 
parameters related to the golden section. It was found that the proposed golden steady state Kalman Filter has a 
satisfactory behavior compared with the classical mean or average filter. Secondly, we deal with long term 
prediction, for example average prediction per quarantine period (14 days). We propose to process blocks of 
measurements of time window corresponding for example to the quarantine period in order to predict the 
average of cases and deaths using steady state Kalman Filter. It was found that the proposed golden steady state 
Kalman Filter produces more reliable predictions than the classical mean or average filter does. The use of steady 
state Kalman Filter for cases and deaths prediction of Covid-19 can be effective for resources and prevention 
measures planning.   

Introduction 

The ongoing pandemic of Covid-19 has driven researchers to direct 
their efforts towards the fight against the disease and the crisis man
agement in health sector and border control. An important aspect in 
controlling the spread of Covid-19 and in resources and prevention 
measures planning, is the prediction of new cases and new deaths. Well 
established epidemiological models for long-term predictions, include 
variations of the Susceptible – Infectious – Recovered (SIR), such as the 
Susceptible – Infectious – Recovered – Dead (SIRD) [1] or the Suscep
tible – Exposed – Symptomatic infectious – Asymptomatic infectious – 
Quarantined – Hospitalized – Recovered cases – Dead (SESAQHRD) 
model, which focus on the basic reproduction number (R0), and the per 
day infection mortality and recovery rates [2]. The lack of a Covid-19 
registry with traceable data obtained in a systematic manner and the 
lack of effective, well targeted or constant counter measures make the 
modeling of the Covid-19 outbreak a difficult task. Machine learning 
techniques have also been proposed [3], in order to face this difficulty. 
In [3], a moving average (MA) filter is used in order to forecast new daily 
cases and a Long Short Term Memory for Data Training-SAE (LSTM- 
SAE) network model was used to forecast the virus spreading. Time 
varying Kalman filters have been applied to daily predict new cases and 

deaths in [4]. An Autoregressive Integrated Moving Average (ARIMA) 
model is used in [5] to predict the epidemiological trend of the preva
lence and incidence of Covid-19. Kalman Filter with the Autoregressive 
Integrated Moving Average (ARIMA) model is used in [6] to obtain 
forecasts of active cases, recoveries and deaths related to Covid-19 in 
Pakistan. Kalman Filters have also been proposed to estimate the future 
spread of Covid-19 [7] giving satisfactory results on short term esti
mates; their performance is poorer for long term forecasting. 

The motivation of this work has been the development of tools for 
cases and deaths predictions, based on steady state Kalman Filter, that 
will allow the health system and authorities at the local or regional level 
to better prepare and manage the crisis. They may also be used in an 
early warning and emergency response system which collects ubiquitous 
data, such as smart city or smart building data, and combines it with 
historical statistical data and data collected at testing points (hospitals, 
borders). 

The novelty of this work concerns (a) the design of a Finite Impulse 
Response (FIR) filter with coefficients related to the golden section (b) 
the design of a Steady State Kalman Filter with parameters related to the 
golden section, (c) the design of the FIR form of the Steady State Kalman 
Filter which does not require all the previous observations, (d) the 
applicability of the proposed filters in short term (daily) prediction as 
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well as in long term prediction (quarantine period). 
In Section “Short term daily prediction” we present the classical 

mean or average filter as well as the proposed golden steady state Kal
man filter for short term prediction, namely daily cases and deaths 
prediction for Covid-19; we also present simulation results. In Section 
“Long term average prediction” we present the use of steady state Kal
man filter for long term cases and deaths average prediction, for 
example average prediction per quarantine period (14 days); we also 
present simulation results. The conclusions are summarized in Section 
“Conclusions”. 

Short term daily prediction 

The aim is to predict the Covid-19 new cases and deaths on a daily 
basis using previous observations (cases/deaths). Thus we need a mea
surement driven scalar model, where the measurement z(k) is the 
number of new cases or new deaths observed at time k and the state x(k)
corresponds to the number of new cases and deaths at time k. Then the 
aim is to predict the number of new cases and deaths x(k+1/k) at time 
k+1 given the measurements till timek ≥ 0 , i.e. given the observations 
z(0),z(1),⋯,z(k). The observations are assumed to be zero for negative 
time: z(k) = 0,k < 0. The prediction is the output of a filter, which has 
the observations in its input, as it is shown in Fig. 1. In the remaining of 
this section, we are going to design various filters, including Kalman 
filter. 

Mean filter (MF) or average filter (AF) 

The basic idea is that the prediction of daily cases/deaths can be 
computed as the mean (average) of previous observations. 

The prediction is the mean (average) of M last observations. 

x(k+ 1/k) =
∑M− 1

i=0
miz(k − i) =

1
M

∑M− 1

i=0
z(k − i) (1) 

This is a Moving Average filter MA(M-1) with M equal coefficients: 

mi =
1
M
, i = 0, 1,⋯,M − 1 (2) 

Note that 

∑M− 1

i=0
mi = 1 (3) 

The MA filter is a Finite Impulse Response (FIR) filter. M is the order 
of the MA filter. 

We name the filter defined by (1) with coefficients in (2) as Mean 
Filter (MF) or Average Filter (AF) due to the fact that the prediction is 
the mean (average) of the M last observations. M = 7 (1 week), M = 14 
(2 weeks - quarantine time), M = 21 (3 weeks) are proposed in this case. 

Golden FIR filter (GFIR) 

The basic idea is that the prediction of daily cases/deaths can be 
computed using weighted previous observations. 

The prediction is 

x(k+ 1/k) =
∑M− 1

i=0
diz(k − i) (4) 

The sum of the weights is 

∑M− 1

i=0
di = 1 (5) 

The idea is to use M last observations. 
Each observation will contribute to the prediction with weight a of 

the rest of the sum, where a is the golden section: 

a =

̅̅̅
5

√
− 1

2
= 0.618 (6)  

which is the positive solution of the equation 

a2 + a − 1 = 0 (7) 

Then the weights are: 

d0 = a∙1 = a  

d1 = a∙[1 − a] = a∙a2 = a3  

d2 = a∙
[
1 − a − a3] = a − a2 − a4 = a∙[1 − a] − a4 = a∙a2 − a4 = a3 − a4

= a3∙[1 − a] = a3∙a2 = a5  

… 

dM− 2 = a2M− 3 

The last weight results from the restriction that the sum of the 
weights equals to 1. 

dM− 1 = 1 −
[
a+ a3 + a5 +⋯+ a2M− 3] = [1 − a] − a3 − a5 − ⋯ − a2M− 3

= a2 − a3 − a5 − ⋯ − a2M− 3 = a2∙[1 − a] − a5 − ⋯ − a2M− 3

= a2∙a2 − a5 − ⋯ − a2M− 3 = a4 − a5 − ⋯ − a2M− 3 = ⋯

= a2M− 4 − a2M− 3 = a2M− 4∙[1 − a] = a2M− 4∙a2 = a2M− 2 

Hence the weights are related to the golden section and the co
efficients of (4) are: 

di = a2i+1, i = 0, 1,⋯,M − 2 (8)  

dM− 1 = a2M− 2 (9) 

The derived filter is also a Moving Average filter MA(M− 1) whose 
coefficients are: 

a, a3, a5, a7,⋯, a2M− 3, a2M− 2 

The contribution of the observations in the forecast decreases as the 
observations move away from the prediction time, in line with weights 
associated with the golden section. 

This MA filter is a Finite Impulse Response (FIR) filter. 
We name the filter defined by (4) with coefficients in (8)-(9) as 

Golden FIR filter (GFIR) due to the fact that the prediction results from a 
FIR filter with coefficients related to the golden section. M = 7 (1 week), 
M = 14 (2 weeks - quarantine time), M = 21 (3 weeks) can be used as in 
Mean Filter (MF) or Average Filter (AF). 

Golden steady state Kalman filter (GSSKF) 

The basic idea is that the prediction of daily cases/deaths can be 
computed using steady state Kalman filter. 

The general discrete time scalar linear model used to formulate the 
Kalman Filter (KF) consists of the dynamic and the statistical model. The 
dynamic model expresses the relationship between state and the mea
surement and is described by the following state space equations: 

x(k+ 1) = F(k + 1, k)x(k) +w(k) (10)  

z(k) = H(k)x(k)+ v(k) (11) Fig. 1. Daily prediction using filter.  
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for k = 0,1,⋯, with initial condition x(0), 
where x(k) is the state vector, z(k) is measurement vector, w(k) is the 

state noise and v(k) is the measurement noise at time k. The transition 
parameter F(k+1, k) describes the relation between two succeeded 
states. The output parameter H(k)describes the relation between the 
state and the measurement at the same time. Assuming that the state 
corresponds to the measurement, we get 

H = H(k) = 1 (12) 

Assuming that the state does change very slowly from day to day, we 
consider that it does not change from step to step, so we get 

F = F(k + 1, k) = 1 (13) 

The statistical model describes the nature of state and measurements. 
The basic assumption is that a) the state noise is a zero mean Gaussian 
process with variance Q(k) and b) and the measurement noise is a zero 
mean Gaussian process with variance R(k). The following assumptions 
also hold: (a) the initial value of the state x(0) is a Gaussian random 
variable with mean x0 and variance P0, (b) the noise stochastic processes 
and the random variable x(0) are independent. 

The discrete time Kalman filter [8] is the most well-known algorithm 
that solves the filtering problem, producing the state estimation x(k/k)
and the corresponding estimation error variance P(k/k) as well as the 
state prediction x(k+1/k) and the corresponding prediction error vari
ance P(k + 1/k). 

The state and measurement noise variances Q(k) and R(k) concern a 
time period before the prediction time. In fact, Q(k) is the variance of the 
difference of two succeeded observations and R(k) is the variance of the 
measurements for a time period before the prediction time. In [4] it was 
proposed that the noise variances can be computed on line for the time 
interval from the beginning till the prediction time or for a fixed back
wards time interval before the prediction time. Then the noise variances 
are time varying and the Time Varying Kalman Filter is derived: 

K(k) =
P(k/k − 1)

P(k/k − 1) + R(k)
(14)  

x(k/k) = [1 − K(k) ]x(k/k − 1)+K(k)z(k) (15)  

P(k/k) = [1 − K(k) ]P(k/k − 1) (16)  

x(k+ 1/k) = x(k/k) (17)  

P(k+ 1/k) = Q(k) +P(k/k) (18) 

for k = 0, 1, ⋯, with initial conditions x0 = x(0/ − 1) and P0 =

P(0/ − 1)
whereK(k)is the Kalman Filter gain. 
A variation results assuming that the noise variances are constant, i. 

e. Q = Q(k) and R = R(k). The noise variances can be computed off-line 
for the time interval from the beginning of the disease till the beginning 
of producing predictions or for a fixed initial time interval determined 
by the previous pandemic wave. Then the noise variances are time 
invariant and the Time Invariant Kalman Filter is derived. 

In the following, we propose a model with constant noise variances 
Q = R = 1. In this case, the Kalman Filter parameters are F = H = Q =

R = 1 resulting in the random walk system. 
Then the prediction is 

x(k + 1/k) =
1

P(k/k − 1) + 1
x(k/k − 1)+

P(k/k − 1)
P(k/k − 1) + 1

z(k) (19)  

and the prediction error variance is 

P(k + 1/k) = 1+
P(k/k − 1)

P(k/k − 1) + 1
(20) 

The prediction error variance can be computed iteratively by the 

previous equation, known as the Riccati equation [9]. The Riccati 
equation can be written as: 

P(k + 1/k) =
2P(k/k − 1) + 1
P(k/k − 1) + 1

(21) 

The prediction error variance tends to the steady state prediction 
error variance P [9] that satisfies the algebraic Riccati equation is: 

P =
2P + 1
P + 1

(22) 

The algebraic Riccati equation can be written as: 

P2 − P − 1 = 0 (23) 

The positive solution is the steady state prediction error variance P: 

P =
1 +

̅̅̅
5

√

2
=

1
a

(24)  

where a is the golden section in (6). 
Then, from (14) and (24) the steady state Kalman filter gain is 

K =
P

P + 1
=

1
a

1
a + 1

=
1

1 + a
= a (25) 

Thus the steady state Kalman filter gain is K = a and is equal to the 
golden section. 

Then the Steady State Kalman Filter is derived: 

x(k+ 1/k) = Ax(k/k − 1)+Bz(k) (26) 

for k = 0,1,⋯, with initial condition x0 = x(0/ − 1), 
where 

A = [1 − K] = 1 − a = a2 (27)  

B = K = a (28) 

as derived by the equalities in (25) and (7). 
Thus, the Golden Steady State Kalman Filter (GSSKF) has been 

derived: 

x(k+ 1/k) = a2x(k/k − 1)+ az(k) (29) 

for k = 0,1,⋯, with initial condition x0 = x(0/ − 1). 
The parameters of this Steady State Kalman Filter are related to the 

golden section. 
We are able to use zero initial condition x0 = x(0/ − 1) = 0 or to use 

the last measurement before the prediction beginning as initial condi
tion x0 = x(0/ − 1) = z(− 1). 

This is an Autoregressive Moving Average filter ARMA(1,0) with 
coefficients: 

b0 = a and a1 = − a2 

We name the filter defined in (29) as Golden Steady State Kalman 
Filter (GSSKF) due to the fact that the prediction results from the 
implementation of a Steady State Kalman Filter with parameters related 
to the golden section. 

Golden FIR steady state Kalman filter (GFIRSSKF) 

The basic idea is that the prediction of daily cases/deaths can be 
computed using the FIR form of the steady state Kalman filter. 

The FIR form of the Steady State Kalman Filter (SSKF) can be 
implemented when A < 1 [10]. Thus, the FIR form of the Golden Steady 
State Kalman Filter (GSSKF) can be implemented due to the fact that 

A = a2 = 1 − a < 1 (30) 

Without loss of generality, let x(0/ − 1) = 0. 
Then 

x(1/0) = a2x(0/ − 1)+ az(0) = az(0)
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x(2/1) = a2x(1/0)+ az(1) = a3z(0)+ az(1)

x(3/2) = a2x(2/1)+ az(2) = a5z(0)+ a3z(1)+ az(2)

x(4/3) = a2x(3/2)+ az(3) = a7z(0)+ a5z(1)+ a3z(2)+ az(3)

… 

x(M + 1/M) = a2M+1z(0)+ a2M− 1z(1)+⋯+ a3z(M − 1)+ az(M)

Working as in [10], let 

a2M+1 < ε (31) 

then 

x(M + 1/M) = a2M− 1z(1)+⋯+ a3z(M − 1)+ az(M)

x(M + 2/M + 1) = a2M− 1z(2)+⋯+ a3z(M)+ az(M + 1)

x(M + 3/M + 2) = a2M− 1z(3)+⋯+ a3z(M + 1)+ az(M + 2)

… 

Then 

x(k+ 1/k) = a2M− 1z(k − (M − 1))+ a2M− 3z(k − (M − 2))+⋯+ a3z(k − 1)+ az(k)

It is obvious that this pattern holds for k ≥ M. Recall that the ob
servations are assumed to be zero for negative time; then this pattern 
holds for k ≥ 0. Thus, the FIR Steady State Kalman Filter (FIRSSKF) is 
derived: 

x(k+ 1/k) =
∑M− 1

i=0
biz(k − i) (32) 

where 

bi = a2i+1, i = 0, 1,⋯,M − 1 (33) 

The coefficients of the filter are related to the golden section. 
This is a Moving Average filter MA(M-1) with coefficients: 

a, a3, a5, a7,⋯, a2M− 3, a2M− 1 

The MA filter is a Finite Impulse Response (FIR) filter. 
We name the filter defined by (32) with coefficients in (33) as Golden 

FIR Steady State Kalman Filter (GFIRSSKF) due to the fact that the 
prediction results from the implementation of a FIR Steady State Kalman 
Filter with coefficients related to the golden section. 

Proposed M values are: M = 4 (a2M+1 = a9 = 0.0132), M = 7 
(a2M+1 = a15 = 7.3314∙10− 4), M = 14 (a2M+1 = a29 = 8.6968∙10− 7), 
M = 21 (a2M+1 = a43 = 1.0316∙10− 9). 

Note that GFIRSSKF differs from GFIR in the last coefficient. 
The FIR implementation of the Steady State Kalman Filter requires 

the knowledge of a subset of previous time measurements to calculate 
the state estimate; there is no need of any previous estimates calculation 
[10]. Thus, the basic advantage of the FIR implementation of the Steady 
State Kalman Filter is that there is no need of all the previous 
observations. 

Simulation results 

The results presented are based on the publicly available data for 
Greece. 

The data used concern the new cases and the new deaths in Greece 
for the time interval from Feb 26, 2020 till June 14, 2020 [11]. 

The output of each filter (prediction) is corrected computing the 
ceiling of the prediction, in order to produce integer predictions 

(pessimistic scenario). 
Fig. 2 depicts the daily prediction of new cases in Greece using the 

Mean Filter (MF) or Average Filter (AF) of order M = 7 and M = 14, as 
well as using the Golden Steady State Kalman Filter (GSSKF). 

Table 1 presents the mean percent absolute error and the mean ab
solute error prediction for new cases in Greece using MF, GFIR, 
GFIRSSKF with M = 4, M = 7, M = 14, M = 21 and GSSKF. The mean 
absolute error is computed as the average of the absolute difference 
between observation and prediction. The mean percent average ab
solute error is computed as the absolute difference between the average 
observation and average prediction divided by the average observation 
and multiplied by 100. 

Table 2 presents the mean percent absolute error and the mean ab
solute error prediction for new deaths in Greece using MF, GFIR, 
GFIRSSKF with M = 4, M = 7, M = 14, M = 21 and GSSKF. 

Long term average prediction 

The basic idea is to process blocks of measurements of a time window 
corresponding for example to the quarantine period in order to predict 
the average of cases and deaths using steady state Kalman Filter. Then 
long term prediction is derived, in the sense of predicting the average of 
states. So, the cases/deaths prediction concerns the prediction at time 
moment equal to the middle of the time window, that can be selected to 
correspond to a week, or a quarantine period. The length of the time 
window is denoted by N, i.e. the average prediction is derived every N 
(forward) days, for example 7 days (1 week), 14 days (quarantine 
period). 

Assume the time invariant model with parameters F = H = Q = R =

1. 
Then 

x(k+ 1) = x(k) +w(k) (34)  

z(k) = x(k) + v(k) (35) 

Let us now use the average values of the state and measurement 
variables for every N (forward) time instants, defining them respectively 
as: 

xN(j) =
1
N

∑N− 1

i=0
x(jN + i), j = 0, 1,⋯ (36)  

zN(j) =
1
N

∑N− 1

i=0
z(jN + i), j = 0, 1,⋯ (37) 

From (34) we get 

x(k+ 1) = x(k) +w(k)

x(k+ 2) = x(k+ 1)+w(k+ 1) = x(k)+w(k) +w(k+ 1)

x(k+ 3) = x(k+ 3)+w(k+ 2) = x(k)+w(k) +w(k+ 1)+w(k+ 2)

… 

x(k+N) = x(k)+w(k) +w(k+ 1)+w(k+ 2)+w(k+(N − 1))

i.e. 

x(k+N) = x(k)+
∑N− 1

i=0
w(k + i) (38) 

Then 
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xN(j + 1) =
1
N

∑N− 1

i=0
x((j + 1)N + i) =

1
N

∑N− 1

i=0
x(jN + i + N) =

1
N

∑N− 1

i=0

{

x(jN + i) +
∑N− 1

l =0
w(jN + i + l )

}

=

1
N

∑N− 1

i=0
x(jN + i) +

1
N

∑N− 1

i=0

∑N− 1

l =0
w(jN + i + l ) =

xN(j) +
1
N

∑N− 1

i=0

∑N− 1

l =0
w(jN + i + l )

Hence 

xN(j+ 1) = xN(j)+wN(j) (39) 

where 

F = 1 (40) 

and 

wN(j) =
1
N

∑N− 1

i=0

∑N− 1

l =0
w(jN + i + l ) (41) 

Using (41) and Q = 1 we have: 

Q =
1
N

∑N− 1

i=0

∑N− 1

l =0
1 =

1
N

∑N− 1

i=0
N =

N
N

∑N− 1

i=0
1 = N (42) 

Also 

zN(j) =
1
N

∑N− 1

i=0
z(jN + i) =

1
N

∑N− 1

i=0
{x(jN + i)+ v(jN + i) }

=
1
N

∑N− 1

i=0
x(jN + i)+

1
N

∑N− 1

i=0
v(jN + i) = xN(j)+

1
N

∑N− 1

i=0
v(jN + i)

Hence 

zN(j) = xN(j)+ vN(j) (43) 

where 

H = 1 (44) 

and 

vN(j) =
1
N

∑N− 1

i=0
v(jN + i) (45) 

Using (45) and R = 1 we have: 

Fig. 2. Daily cases prediction using MF and GSSKF.  

Table 1 
Daily error cases prediction in Greece using MF, GFIR, GSSKF, GFIRSSKF.  

mean percent average absolute error  

MF GFIR GSSKF GFIRSSKF 

M = 4 (4 days) 0.4469 1.2448 1.3406 0.7980 
M = 7 (1 week) 0.0958 1.4044 1.3406 1.2448 
M = 14 (2 weeks - quarantine 

time) 
1.4044 1.3406 1.3406 1.3406 

M = 21 (3 weeks) 3.0322 1.3406 1.3406 1.3406 
mean absolute error  

MF GFIR GSSKF GFIRSSKF 

M = 4 (4 days) 16.0000 15.4404 15.5596 15.3670 
M = 7 (1 week) 15.4954 15.5229 15.5596 15.5505 
M = 14 (2 weeks - quarantine 

time) 
17.3578 15.5596 15.5596 15.5596 

M = 21 (3 weeks) 19.7523 15.5596 15.5596 15.5596  

Table 2 
Daily error deaths prediction in Greece using MF, GFIR, GSSKF, GFIRSSKF.  

mean percent average absolute error  

MF GFIR GSSKF GFIRSSKF 

M = 4 (4 days) 20.8791 27.4725 28.5714 26.3736 
M = 7 (1 week) 22.5275 28.5714 28.5714 28.5714 
M = 14 (2 weeks - quarantine 

time) 
24.1758 28.5714 28.5714 28.5714 

M = 21 (3 weeks) 25.2747 28.5714 28.5714 28.5714 
mean absolute error  

MF GFIR GSSKF GFIRSSKF 

M = 4 (4 days) 1.2766 1.3617 1.3617 1.3404 
M = 7 (1 week) 1.2447 1.3617 1.3617 1.3617 
M = 14 (2 weeks - quarantine 

time) 
1.3830 1.3617 1.3617 1.3617 

M = 21 (3 weeks) 1.4681 1.3617 1.3617 1.3617  
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R =
1
N

∑N− 1

i=0
1 =

1
N

∑N− 1

i=0
1 =

N
N

= 1 (46) 

Hence the parameters of the state space model (per time instant i for 
the average of time window of length N) are: F = H = 1,Q = N,R = 1. 

Then the algebraic Riccati equation is: 

P = N +
P

P + 1
(47) 

and it is written as: 

P2
− NP − N = 0 (48) 

The positive solution is the steady state prediction error variance P: 

P =
N +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2 + 4N

√

2
(49) 

Then, the steady state Kalman filter gain is 

K =
P

P + 1
=

N +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2 + 4N

√

N + 2 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2 + 4N

√ =
− N +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2 + 4N

√

2
(50) 

and 

A =
[
1 − K

]
=

2
N + 2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2 + 4N

√ =
N + 2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2 + 4N

√

2
(51) 

Hence, the average prediction is 

xN(j+ 1/j) = AxN(j/j − 1)+KzN(j) (52) 

We name the filter defined by (52) as Average Golden Steady State 
Kalman Filter (AGSSKF) due to the fact that the filter results from GSSKF 
used for daily prediction. 

Note that average prediction is derived every N (forward) days and 
the steady state Kalman filter parameters depend on N. In the case where 
N = 1 (1 day) the AGSSKF is GSSKF. N = 7 (1 week), N = 14 (2 weeks - 
quarantine time) can be used. 

For the FIR filters MF, GFIR, GFIRSSKF, form (1), (4), (32) we get the 
daily prediction as 

x(k+ 1/k) =
∑M− 1

i=0
ciz(k − i) (53) 

with coefficients ci = mi, ci = di, ci = bi, i = 0, 1,⋯,M − 1 defined in 
(2), (8)-(9) and (33) respectively. 

We define the average values of the measurement variables for every 
set of N measurements: 

zN(j) =
1
N

∑N− 1

i=0
z(jN + i), j = 0, 1,⋯ (54) 

Then the average prediction for the FIR filters MF, GFIR, GFIRSSKF 
is 

xN(j+ 1/j) =
∑M− 1

i=0
bizN(j − i), j = 0, 1,⋯ (55) 

with coefficients defined in (2), (8)-(9) and (33) respectively. 

Simulation results 

The data used concern the new cases and the new deaths in Greece 
for the time interval from Mar 16, 2020 till Oct 11, 2020 [11]. The 
prediction period is of 210 days (i.e. 30 weeks or 15 quarantine periods). 

Fig. 3 depicts the daily prediction of new cases in Greece using the 
Mean filter (MF) or Average filter (AF) of order M = 7 and M = 14, as 
well as using the Average Golden Steady State Kalman Filter (AGSSKF) 
with N = 1. 

Fig. 4 depicts the average prediction of new cases in Greece using the 
Mean filter (MF) or Average filter (AF) of order M = 7 and M = 14, as 
well as using the Average Golden Steady State Kalman Filter (AGSSKF) 
with N = 7 (week) and N = 14 (quarantine period). 

Table 3 presents the mean absolute error prediction for new cases in 
Greece using MF, GFIR, GFIRSSKF with M = 7, M = 14, as well as 
AGSSKF with N = 1 (day), N = 7 (week) and N = 14 (quarantine period). 

Table 4 presents the mean absolute error prediction for new deaths in 
Greece using MF, GFIR, GFIRSSKF with M = 7, M = 14, as well as 
AGSSKF with N = 1 (day), N = 7 (week) and N = 14 (quarantine period). 

Conclusions 

The aim of this paper was to develop prediction filters in order to 
predict the cases and deaths of Covid-19 in a daily basis (short term 
prediction) or in a quarantine period basis (long term prediction). 

Aiming the cases and deaths of Covid-19 daily predictions we have 
used a) the classical mean or average filter, b) the proposed Golden FIR 
filter (GFIR) with coefficients related to the golden section, c) the 
developed the Golden Steady State Kalman Filter (GSSKF) with param
eters related to the golden section and d) the Golden FIR Steady State 
Kalman Filter (GFIRSSKF) with the advantage that is that there is no 
need of all the previous observations. 

The basic results are: 

Fig. 3. Daily prediction of new cases in Greece using MF and AGSSKF.  
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- prediction using MF becomes worse as M increases  
- prediction using SSKF becomes better as M increases; there is no 

prediction improvement after some M  
- the FIR form of the SSKF requires the knowledge only of a subset of 

previous time measurements to calculate estimate  
- cases prediction using SSKF is better than MA prediction of order M 
= 14 in Greece  

- the mean absolute error in Greece new deaths prediction is of the 
order of 1 death  

- It was found that the proposed golden steady state Kalman Filter has 
a satisfactory behavior compared with the classical mean or average 
filter 

Aiming the cases and deaths of Covid-19 average predictions we 
proposed to process blocks of measurements of time window corre
sponding for example to the quarantine period. We designed the Golden 
Steady State Kalman Filter (GSSKF) with parameters related to the 
golden section. 

The basic results are:  

- cases and deaths average prediction using SSKF is better than MA 
prediction  

- MA prediction becomes worst as the time window increases  
- the mean absolute error in Greece new deaths average prediction is 

of the order of 1 death 
- the proposed golden steady state Kalman Filter produces more ac

curate predictions than the classical mean or average filter does 

Thus, the developed golden steady state Kalman Filter can be used in 
daily or average prediction producing reliable predictions. Hence, the 
use of steady state Kalman Filter for cases and deaths prediction of 
Covid-19 can be effective for resources and prevention measures 
planning. 
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Fig. 4. Average prediction of new cases in Greece using MF and AGSSKF.  

Table 3 
Daily and average mean absolute error for cases prediction in Greece using MF, 
GFIR, AGSSKF, GFIRSSKF.    

MF GFIR AGSSKF GFIRSSKF 

N = 1 
(1 day) 

M = 7 (1 week)  28.6822  27.1767  27.1842  27.1859 
M = 14 (2 weeks)  33.3551  27.1842  27.1842  27.1842 

N = 7 
(1 week) 

M = 7 (1 week)  52.7544  27.5232  23.7433  27.5460 
M = 14 (2 weeks)  72.1650  27.5346  23.7433  27.5346 

N = 14 
(2 weeks) 

M = 7 (1 week)  74.9832  43.5088  32.2581  43.5281 
M = 14 (2 weeks)  83.5886  43.5112  32.2581  43.5112  

Table 4 
Daily and average mean absolute error for deaths prediction in Greece using MF, 
GFIR, AGSSKF, GFIRSSKF.    

MF GFIR AGSSKF GFIRSSKF 

N = 1 
(1 day) 

M = 7 (1 week)  1.2057  1.3103  1.3103  1.3102 
M = 14 (2 weeks)  1.2666  1.3103  1.3103  1.3103 

N = 7 
(1 week) 

M = 7 (1 week)  1.3547  0.8196  0.8013  0.8192 
M = 14 (2 weeks)  1.6615  0.8196  0.8013  0.8196 

N = 14 
(2 weeks) 

M = 7 (1 week)  1.6159  1.0620  0.8615  1.0620 
M = 14 (2 weeks)  1.4103  1.0612  0.8615  1.0612  
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