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We present two time invariant models for Global Systems for Mobile (GSM) position tracking, which describe the movement in
𝑥-axis and 𝑦-axis simultaneously or separately. We present the time invariant filters as well as the steady state filters: the classical
Kalman filter and Lainiotis Filter and the Join Kalman Lainiotis Filter, which consists of the parallel usage of the two classical filters.
Various implementations are proposed and compared with respect to their behavior and to their computational burden: all time
invariant and steady state filters have the same behavior using both proposed models but have different computational burden.
Finally, we propose a Finite Impulse Response (FIR) implementation of the Steady State Kalman, and Lainiotis filters, which does
not require previous estimations but requires a well-defined set of previous measurements.

1. Introduction

The Global Positioning System (GPS) is the most popular
positioning technique in navigation providing reliablemobile
location estimates in many applications [1–4]. Thus wireless
location systems offering reliable mobile location estimates
have been studied by researchers and engineers over the past
few years. Various techniques require one base station or at
least two base stations or more than three base stations in
order to determine the location of the user. The accuracy
of the positioning results is affected by many interference
sources as the signals propagate in the atmosphere. So, tech-
niques were developed using filters to estimate the location
of the user through the location information exchanged
between the handset and the base station. Kalman filter
has been used in the localization process [4–6], due to the
following advantages mentioned in [5]: (a) Kalman filter [7–
9] processes noisymeasurements and so it can smooth out the
effects of noise in the estimated state variables by integrating
more information from reliable data more than unreliable

data and (b) Kalman filter allows the combination of mea-
surements from different sources (locomotion data) and dif-
ferent times. Kalman filter was implemented for Global Sys-
tems forMobile (GSM) position tracking in [5]: Kalman filter
was used for tracking in two dimensions and it was stated that
Kalman filter is very powerful due to its reliable performance,
because it yielded enhanced position tracking results.

In this paper we extend the ideas in [5] in two fields:
(a) by using two models for GSM position tracking, which
describe the movement in 𝑥-axis and 𝑦-axis simultaneously
or separately and (b) by using the Kalman filter and the
Lainiotis filter [8, 10]. The paper is organized as follows. In
Section 2, we present two time invariant models for Global
Systems for Mobile (GSM) position tracking, which describe
the movement in 𝑥-axis and 𝑦-axis. In Section 3, we present
the time invariant filters: Kalman filter, Lainiotis Filter and
Join Kalman Lainiotis Filter. In Section 4, we present the
corresponding steady state filters. In Section 5, various imple-
mentations are proposed. In Section 6, we compare the filters
with respect to their behavior and to their computational
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burden. In Section 7, we propose a Finite Impulse Response
(FIR) implementation of the Steady State Kalman and Laini-
otis Filters. Finally, Section 8 summarizes the conclusions.

2. Time Invariant Models

Linear estimation is associated with time invariant systems
described by the following state space equations:

𝑥 (𝑘 + 1) = 𝐹𝑥 (𝑘) + 𝐺𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐻𝑥 (𝑘) + V (𝑘)
(1)

for 𝑘 ≥ 0, where 𝑥(𝑘) is the 𝑛-dimensional state vector at
time 𝑘, 𝑧(𝑘) is the𝑚-dimensionalmeasurement vector at time
𝑘, 𝐹 is the 𝑛 × 𝑛 system transition matrix, 𝐻 is the 𝑚 × 𝑛

output matrix, 𝑤(𝑘) is the plant noise at time 𝑘, V(𝑘) is the
measurement noise at time 𝑘. Also, {𝑤(𝑘)} and {V(𝑘)} are
Gaussian zero-meanwhite randomprocesseswith covariance
matrices 𝑄 and 𝑅, respectively. The initial state 𝑥(0) is a
Gaussian random variable with mean 𝑥

0
and covariance 𝑃

0

and is assumed to be independent of 𝑤(𝑘) and V(𝑘).
In this paper we consider two models.

Model A.The first model (model A) describes the movement
in 𝑥-axis and 𝑦-axis simultaneously and follows the ideas in
[5].

The state vector is of dimension 𝑛 = 4 and contains
the position and the velocity in 𝑥-axis and 𝑦-axis: 𝑥(𝑘) =

[𝑠𝑥
(𝑘) 𝜐

𝑥
(𝑘) 𝑠
𝑦
(𝑘) 𝜐

𝑦
(𝑘)]

𝑇. The measurement vector is of
dimension𝑚 = 2 and contains the measured position 𝑥-axis
and 𝑦-axis: 𝑧(𝑘) = [𝑧𝑥(𝑘) 𝑧

𝑦
(𝑘)]

𝑇.
Then we take:

𝐹 =

[

[

[

[

1 Δ𝑡 0 0

0 1 0 0

0 0 1 Δ𝑡

0 0 0 1

]

]

]

]

, 𝐺 =

[

[

[

[

[

[

[

1

2

Δ𝑡 0

1 0

0

1

2

Δ𝑡

0 1

]

]

]

]

]

]

]

,

𝐻 = [

1 Δ𝑡 0 0

0 0 1 Δ𝑡
] .

(2)

The plant noise 𝑤(𝑘) = [𝑤𝑥
(𝑘) 𝑤

𝑦
(𝑘)]

𝑇 is Gaussian zero-

mean with covariance matrix 𝑄 = [

𝜎
2

𝑥𝑞
0

0 𝜎
2

𝑦𝑞

].

The measurement noise V(𝑘) = [V𝑥(𝑘) V
𝑦
(𝑘)]

𝑇 is Gaus-

sian zero-mean with covariance matrix 𝑅 = [ 𝜎
2

𝑥𝑟
0

0 𝜎
2

𝑦𝑟

].

Model B. The second model (model B) describes the move-
ment in 𝑥-axis and 𝑦-axis separately. In each axis, the state
vector is of dimension 𝑛 = 2 and contains the position and
the velocity: 𝑥(𝑘) = [𝑠(𝑘) 𝜐(𝑘)]

𝑇. The measurement vector
vector is of dimension 𝑚 = 1 and contains the measured
position 𝑧(𝑘).

Then we take:

𝐹 = [

1 Δ𝑡

0 1
] , 𝐺 = [

1

2

Δ𝑡

1

] , 𝐻 = [1 Δ𝑡] . (3)

The plant noise 𝑤(𝑘) is Gaussian zero-mean with covariance
matrix 𝑄 = 𝜎

2

𝑞
.

The measurement noise V(𝑘) is Gaussian zero-mean with
covariance matrix 𝑅 = 𝜎2

𝑟
.

It is obvious that we are able to describe the movement
in both axes using two separate state vectors: 𝑥

𝑥
(𝑘) =

[𝑠𝑥
(𝑘) 𝜐

𝑥
(𝑘)]

𝑇 for the 𝑥-axis and 𝑥
𝑦
(𝑘) = [𝑠𝑦

(𝑘) 𝜐
𝑦
(𝑘)]

𝑇 for
the 𝑦-axis. If we merge these two state vectors, we take the
state vector 𝑥(𝑘) = [𝑠𝑥(𝑘) 𝜐

𝑥
(𝑘) 𝑠
𝑦
(𝑘) 𝜐

𝑦
(𝑘)]

𝑇 of model A.

3. Time Invariant Kalman and Lainiotis Filters

In this section, we present the classical time invariant Kalman
filter [7–9] and Lainiotis Filter [8, 10], which are the most
well-known algorithms that solve the filtering problem.
Both algorithms compute the estimation 𝑥(𝑘/𝑘) and the
corresponding estimation error covariance 𝑃(𝑘/𝑘). We also
propose the Join Kalman-Lainiotis Filter which consists of
the parallel (with the samemeasurements) usage of two filters
(one Kalman filter and one Lainiotis Filter) and combination
of the results (weight 50% for each filter).

Kalman Filter (KF). The following equations constitute the
KF:

𝑥 (𝑘 + 1/𝑘) = 𝐹𝑥 (𝑘/𝑘) ,

𝑃 (𝑘 + 1/𝑘) = (𝐺𝑄𝐺
𝑇
) + 𝐹𝑃 (𝑘/𝑘) 𝐹

𝑇
,

𝐾 (𝑘 + 1) = 𝑃 (𝑘 + 1/𝑘)𝐻
𝑇
[𝐻𝑃 (𝑘 + 1/𝑘)𝐻

𝑇
+ 𝑅]

−1

,

𝑥 (𝑘 + 1/𝑘 + 1) = [𝐼 − 𝐾 (𝑘 + 1)𝐻] 𝑥 (𝑘 + 1/𝑘)

+ 𝐾 (𝑘 + 1) 𝑧 (𝑘 + 1) ,

𝑃 (𝑘 + 1/𝑘 + 1) = [𝐼 − 𝐾 (𝑘 + 1)𝐻] 𝑃 (𝑘 + 1/𝑘) ,

(4)

for 𝑘 ≥ 0, with initial conditions 𝑥(0/0) = 𝑥
0
and 𝑃(0/0) =

𝑃
0
.
TheKalman filter computes the estimation𝑥(𝑘/𝑘) and the

estimation error covariance 𝑃(𝑘/𝑘) through the prediction
𝑥(𝑘+1/𝑘) and the corresponding prediction error covariance
𝑃(𝑘 + 1/𝑘) using the Kalman filter gain𝐾(𝑘).

Lainiotis Filter (LF). The following equations constitute the
LF:

𝑥 (𝑘 + 1/𝑘 + 1) = 𝐾𝑛
𝑧 (𝑘 + 1) + 𝐹𝑛

[𝐼 + 𝑃 (𝑘/𝑘)𝑂𝑛
]
−1

× [𝑃 (𝑘/𝑘)𝐾
𝑚
𝑧 (𝑘 + 1) + 𝑥 (𝑘/𝑘)] ,

(5)

𝑃 (𝑘 + 1/𝑘 + 1) = 𝑃𝑛
+ 𝐹
𝑛
[𝐼 + 𝑃 (𝑘/𝑘)𝑂𝑛

]
−1
𝑃 (𝑘/𝑘) 𝐹

𝑇

𝑛
(6)

for 𝑘 ≥ 0, with initial conditions 𝑥(0/0) = 𝑥
0
and 𝑃(0/0) =

𝑃
0
, where

𝐴 = [𝐻(𝐺𝑄𝐺
𝑇
)𝐻
𝑇
+ 𝑅]

−1

,

𝐾
𝑛
= (𝐺𝑄𝐺

𝑇
)𝐻
𝑇
𝐴,

𝐾
𝑚
= 𝐹
𝑇
𝐻
𝑇
𝐴,
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𝑃
𝑛
= (𝐺𝑄𝐺

𝑇
) − 𝐾
𝑛
𝐻(𝐺𝑄𝐺

𝑇
) ,

𝐹
𝑛
= 𝐹 − 𝐾

𝑛
𝐻𝐹,

𝑂
𝑛
= 𝐹
𝑇
𝐻
𝑇
𝐴𝐻𝐹.

(7)

Join Kalman-Lainiotis Filter (JKLF). The filter consists of the
parallel usage of two filters (one Kalman filter and one Laini-
otis Filter) with the same measurements and combination of
the results (weight 50% for each filter):

𝑥 (𝑘/𝑘) =

1

2

𝑥KF (𝑘/𝑘) +
1

2

𝑥LF (𝑘/𝑘) ,

𝑃 (𝑘/𝑘) =

1

2

𝑃KF (𝑘/𝑘) +
1

2

𝑃LF (𝑘/𝑘) .

(8)

4. Steady State Kalman and Lainiotis Filters

For time invariant systems, it is well known [7] that there
exists a steady state value𝑃

𝑝
of the prediction error covariance

matrix, if the signal process model is asymptotically stable, or
if the signal process model is not necessarily asymptotically
stable, but the pair [𝐹,𝐻] is completely detectable and the pair
[𝐹, 𝐺𝐺

1
] is completely stabilizable for any𝐺

1
with𝐺

1
𝐺
𝑇

1
= 𝑄.

Then there also exist a steady state value 𝑃
𝑒
of the estimation

error covariance matrix and a steady state value 𝐾 of the
Kalman filter gain.

In this section we present the Steady State Kalman filter
and Lainiotis Filter. Both algorithms compute the estimation
𝑥(𝑘/𝑘) using the previous estimation and the current mea-
surement. We also propose the Join Steady State Kalman-
Lainiotis Filter, which consists of the parallel usage of two
filters (one Steady State Kalman filter and one Steady State
Lainiotis Filter) with the same measurements and combina-
tion of the results (weight 50% for each filter).

Steady State Kalman Filter (SSKF). The following equation
constitutes the SSKF:

𝑥 (𝑘 + 1/𝑘 + 1) = 𝐴KF𝑥 (𝑘/𝑘) + 𝐵KF𝑧 (𝑘 + 1) (9)

for 𝑘 ≥ 0, with initial condition 𝑥(0/0) = 𝑥
0
, where

𝐴KF = [𝐼 − 𝐾𝐻]𝐹,

𝐵KF = 𝐾.
(10)

The steady state Kalman filter gain 𝐾 is computed by 𝐾 =

𝑃
𝑝
𝐻
𝑇
[𝐻𝑃
𝑝
𝐻
𝑇
+ 𝑅]
−1, where 𝑃

𝑝
is the steady state prediction

error covariance computed by solving the Riccati equation
emanating from Kalman filter (REKF):

𝑃
𝑝
= (𝐺𝑄𝐺

𝑇
) + FP

𝑝
𝐹
𝑇
− FP
𝑝
𝐻
𝑇
[HP
𝑝
𝐻
𝑇
+ 𝑅]

−1

HP
𝑝
𝐹
𝑇
.

(11)

In view of the importance of the Riccati equation emanating
from Kalman filter, there exists considerable literature on
its algebraic solutions [7, 11] or iterative solutions [7, 12–15]
concerning per step or doubling algorithms.

Steady State Lainiotis Filter (SSLF). The following equation
constitutes the SSLF:

𝑥 (𝑘 + 1/𝑘 + 1) = 𝐴LF𝑥 (𝑘/𝑘) + 𝐵LF𝑧 (𝑘 + 1) , (12)

for 𝑘 ≥ 0, with initial condition 𝑥(0/0) = 𝑥
0
, where

𝐴LF = 𝐹𝑛[𝐼 + 𝑃𝑒𝑂𝑛]
−1
,

𝐵LF = 𝐾𝑛 + 𝐹𝑛[𝐼 + 𝑃𝑒𝑂𝑛]
−1
𝑃
𝑒
𝐾
𝑚
,

(13)

and 𝑃
𝑒
is the steady state estimation error covariance com-

puted by solving theRiccati equation emanating fromLainiotis
filter (RELF):

𝑃
𝑒
= 𝑃
𝑛
+ 𝐹
𝑛
[𝐼 + 𝑃

𝑒
𝑂
𝑛
]
−1
𝑃
𝑒
𝐹
𝑇

𝑛
. (14)

In view of the importance of the Riccati equation emanating
from Lainiotis Filter, there exists considerable literature on its
algebraic or iterative solutions [12, 14–16] concerning per step
or doubling algorithms.

Note that in [8] it is shown that SSKF is equivalent to SSLF,
since

𝐴KF = 𝐴LF,

𝐵KF = 𝐵LF.
(15)

Join Steady State Kalman-Lainiotis Filter (JSSKLF). The filter
consists of the parallel usage of two steady state filters (one
Steady State Kalman filter and one Steady State Lainiotis
Filter) with the same measurements and combination of the
results (weight 50% for each filter):

𝑥 (𝑘/𝑘) =

1

2

𝑥KF (𝑘/𝑘) +
1

2

𝑥LF (𝑘/𝑘) , (16)

for 𝑘 ≥ 0.

5. Implementations

In this section, we propose various implementations.
The use of model A which describes the movement in

𝑥-axis and 𝑦-axis simultaneously requires the use one filter;
we are able to use KF/LF/SSKF/SSLF/JKLF in order to com-
pute the estimation and the corresponding estimation error
covariance.

The use of model B, which describes the movement in 𝑥-
axis and 𝑦-axis separately, requires the use of two filters KF/
LF/SSKF/SSLF/JSSKLF in order to compute the estimation
and the corresponding estimation error covariance for each
movement. It is obvious that, if we merge the estimation
𝑥
𝑥
(𝑘/𝑘) = [𝑠𝑥

(𝑘/𝑘) 𝜐
𝑥
(𝑘/𝑘)]

𝑇 for the movement in 𝑥-axis
and the estimation 𝑥

𝑦
(𝑘/𝑘) = [𝑠𝑦

(𝑘/𝑘) 𝜐
𝑦
(𝑘/𝑘)]

𝑇 for the
movement in 𝑦-axis, we take the state vector of model A:

𝑥 (𝑘/𝑘) = [𝑠𝑥 (
𝑘/𝑘) 𝜐

𝑥
(𝑘/𝑘) 𝑠

𝑦
(𝑘/𝑘) 𝜐

𝑦
(𝑘/𝑘)]

𝑇

= [𝑥𝑥 (
𝑘/𝑘) 𝑥

𝑦
(𝑘/𝑘)]

𝑇

.

(17)
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Table 1: GSM position tracking implementations.

Implementation Model System Filter
1

Model A

Time invariant
KF

2 LF
3 JKLF
4

Steady state
SSKF

5 SSLF
6 JSSKLF
7

Model B

Time invariant
KF

8 LF
9 JKLF
10

Steady state
SSKF

11 SSLF
12 JSSKLF

Also, the estimation error covariances 𝑃
𝑥
(𝑘/𝑘) and 𝑃

𝑦
(𝑘/𝑘)

for each movement can be merged to the estimation error
covariance of model A:

𝑃 (𝑘/𝑘) = [

𝑃
𝑥
(𝑘/𝑘) 0

0 𝑃
𝑦
(𝑘/𝑘)

] . (18)

Thus, we propose various implementations for Global Sys-
tems for Mobile (GSM) position tracking, as it is shown in
Table 1.

6. Comparison of the Filters

In this section we compare the filters with respect to their
behavior and to their computational burden.

Example 1. We implemented the filters with the following
parameters:

(i) discretization factor: Δ𝑡 = 1,
(ii) movement reliability: 𝜎2

𝑥𝑞
= 𝜎
2

𝑦𝑞
= 0.01,

(iii) measurements reliability: 𝜎2
𝑥𝑟
= 𝜎
2

𝑦𝑟
= 0.1,

(iv) initial conditions: 𝑥
0
= 0 and 𝑃

0
= 0.

Concerning the behavior of the filters, we found that

(i) the time invariant filters KF, LF and JKLF are equiva-
lent, since they compute the same outputs (estimation
and estimation error covariance), using model A or
model B,

(ii) the steady state filters SSKF, SSLF and JSSKLF are
equivalent, since they compute the same outputs
(estimation and estimation error covariance), using
model A or model B,

(iii) the steady state filters and the time invariant filters
compute outputs very close to each other,

(iv) model A is equivalent to model B, since they produce
the same outputs.

These results are depicted in Figure 1.

Concerning the computational burden of the filters,
we compared the filters with respect to their per-iteration
calculation burdens, computed using the ideas in [8], as
shown in Table 2.

Table 3 summarizes the per-iteration calculation burden
of all implementations, using model A and model B.

We observe that

(i) KF is faster than LF,
(ii) JKLF is slower than KF and LF (since the join filter

requires the implementation of both the Kalman and
Lainiotis filters),

(iii) SSKF is as fast as SSLF,
(iv) SSKF and SSLF are faster than KF and LF,
(v) JSSKLF is slower than SSKF and SSLF,
(vi) the filters usingmodel B are faster than the samefilters

using model A.

Table 4 summarizes speedup between the various imple-
mentations.

We observe that

(i) KF is faster than LF,

speedup (LF model A to KF model A) = 1.316,
speedup (LF model B to KF model B) = 1.290.

(ii) Model B is faster than model A,

speedup (KF model A to SSKF model B) =
25.450,
speedup (LF model A to SSLF model B) =
33.500.

7. FIR Steady State Kalman
and Lainiotis Filters

In this section we propose an FIR implementation of the
Steady State Kalman filter and the Steady State Lainiotis Filter.
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Figure 1: Position and velocity estimation solid line: KF/LF/JKLF, dashed line: SSKF/SSLF/JSSKLF.

Table 2: Per-iteration calculation burden of filters.

KF 4𝑛
3
+ 3.5𝑛

2
− 1.5𝑛 + 4𝑛

2
𝑚 + 𝑛𝑚 + 3𝑛𝑚

2
+ (16𝑚

3
− 3𝑚
2
− 𝑚)/6

LF 4𝑛𝑚 + (58𝑛
3
+ 9𝑛
2
− 7𝑛)/6

JKLF 𝑛
2
+ 3𝑛 (join procedure)

SSKF 2𝑛
2
+ 2𝑛𝑚 − 𝑛

SSLF 2𝑛
2
+ 2𝑛𝑚 − 𝑛

JSSKLF 2𝑛 (join procedure)

Table 3: Per-iteration calculation burden of implementations.

Implementation Model System Filter Calculation burden
1

Model A

Time invariant
KF 509

2 LF 670
3 JKLF 1207
4

Steady state
SSKF 44

5 SSLF 44
6 JSSKLF 96
7

Model B

Time invariant
KF 138

8 LF 178
9 JKLF 326
10

Steady state
SSKF 20

11 SSLF 20
12 JSSKLF 44
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Table 5: Calculation burden of classical and FIR Steady State filters.

SSKF/SSLF 2𝑛
2
+ 2𝑛𝑚 − 𝑛 Per-iteration

FIR SSKF/SSLF 2𝑛
2
+ 2𝑛𝑚 − 𝑛 + (𝑀 − 1)𝑛 When required
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Figure 2: Position and velocity estimation solid line: SSKF/SSLF, dashed line: FIR SSKF/SSLF.

Recall that SSKF and SSLF have equal parameters:

𝐴 = 𝐴KF = 𝐴LF, 𝐵 = 𝐵KF = 𝐵LF. (19)

Then we are able to write

𝑥 (𝑘 + 1/𝑘 + 1) = 𝐴𝑥 (𝑘/𝑘) + 𝐵𝑧 (𝑘 + 1) , (20)

for 𝑘 ≥ 0 with initial condition 𝑥(0/0) = 𝑥
0
.

Then we take:

𝑥 (1/1) = 𝐴𝑥
0
+ 𝐵𝑧 (1)

𝑥 (2/2) = 𝐴
2
𝑥
0
+ 𝐴𝐵𝑧 (1) + 𝐵𝑧 (2)

...

𝑥 (]/]) = 𝐴]
𝑥
0
+ 𝐴

]−1
𝐵𝑧 (1) + ⋅ ⋅ ⋅ + 𝐴𝐵𝑧 (] − 1) + 𝐵𝑧 (]) .

(21)

Using the ideas in [17], the resulting FIR SSKF/SSLF is
formulated as

𝑥 (𝑘/𝑘) =

𝑀−1

∑

𝑗=0

𝐴
𝑗
𝐵𝑧 (𝑘 − 𝑗) , for 𝑘 ≥ 1, (22)

where 𝐴 = 𝐴KF = 𝐴LF and 𝐵 = 𝐵KF = 𝐵LF and𝑀 is the FIR
filter order defined by ‖𝐴𝑀‖ < 𝜀 and ‖𝐴𝑀−1‖ ≥ 𝜀, with 𝜀 a
small real value.

Remarks. (1) The FIR steady state filter coefficients can be
calculated off-line by solving the corresponding Riccati equa-
tion.

(2) The FIR steady state filter does not require previous
estimations but it requires a well-defined set of 𝑀 previous
measurements. This means that we have to wait for 𝑀 time
moments in order to produce the results. Alternatively, we are
able to use only the available measurements until time𝑀 is
reached or to use SSKF until time𝑀.
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Table 6: Calculation burden of classical and FIR steady state filters
implementations.

Model A Model B
SSKF/SSLF 44 20
FIR SSKF/SSLF 40 + 4𝑀 16 + 4𝑀

Table 7: FIR results for Example 1.

𝑀 = 17 Model A Model B
SSKF/SSLF 44 20
FIR SSKF/SSLF 108 84
𝜇 3 5

We implemented the FIR filter for the parameters of the
example in Section 6. We used 𝜀 = 10

−3 and we found𝑀 =

17.
The steady state filters and FIR steady state filters compute

outputs very close to each other, as depicted in Figure 2.
Concerning the computational burden, the FIR steady

state filter possesses a constant burden while the classical
steady state filter (SSKF/SSLF) possesses a constant per-
iteration computational burden, as it is shown in Table 5.

Table 6 summarizes the calculation burden of the classical
and FIR steady state filters implementations, using model A
and model B.

Thus, FIR SSKF/SSLF can be faster than SSKF/SSLF, if we
take results using FIR SSKF/SSLF every (ormore than) 𝜇 time
lags, where 𝜇 is the nearest integer greater than or equal to
the ratio (40 + 4𝑀)/44 = (10 +𝑀)/11 for model A and (16 +
4𝑀)/20 = (4 +𝑀)/5 for model B.

For our example, we take the results, which are appeared
in Table 7.

8. Conclusions

In this paper we presented two time invariant models for
Global Systems for Mobile (GSM) position tracking, which
describe the movement in 𝑥-axis and 𝑦-axis simultaneously
or separately.We presented the time invariant filters as well as
the steady state filters: the classical Kalman filter and Lainiotis
Filter and the Join Kalman Lainiotis Filter, which consists
of the parallel usage of the two classical filters. Various
implementations are proposed and compared with respect to
their behavior and to their computational burden. We found
that all time invariant and steady state filters have the same
behavior using both of the proposed models. We found that
(a)Kalmanfilter is faster thanLainiotis Filter, (b) JoinKalman
Lainiotis Filter is slower than bothKalman filter and Lainiotis
Filter, (c) steady state filters are faster than time invariant
filters and (d) the filters using the model, which handles the
movement in 𝑥-axis and 𝑦-axis separately, are faster than the
same filters using the model, which handles the movement
in 𝑥-axis and 𝑦-axis simultaneously. Finally, we proposed an
FIR implementation of the Steady State Kalman and Lainiotis
Filters, which does not require previous estimations but it
requires a well-defined set of previous measurements.
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