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The modified Riccati equation arises in the implementation of Kalman filter in target tracking under measurement uncertainty
and it cannot be transformed into an equation of the form of the Riccati equation. An iterative solution algorithm of the modified
Riccati equation is proposed. A method is established to decide when the proposed algorithm is faster than the classical one. Both
algorithms have the same behavior: if the system is stable, then there exists a steady-state solution, while if the system is unstable,
then there exists a critical value of the measurement detection probability, below which both iterative algorithms diverge. It is
established that this critical value increases in a logarithmic way as the system becomes more unstable.

1. Introduction

The discrete time modified Riccati equation emanating from
Kalman filter was originally formulated in [1]. It plays an
important role in target tracking [1–10]. Theoretical prop-
erties of the modified Riccati equation have been derived
in [2, 3]. It is well known [2] that the modified Riccati
equation cannot be transformed into an equation of the form
of the Riccati equation. The discrete time Riccati equation
arises in linear estimation, namely, in the implementation
of the discrete time Kalman filter [11]. The modified Riccati
equation is solvable under certain conditions [2, 9] and has
existence and uniqueness properties similar to the Riccati
equation [2].

In Section 2, the modified Riccati equation associated
with target tracking under measurement uncertainty is
presented; the case without clutter but with detection
probability of less than one is considered. In Section 3, an
iterative solution algorithm of the modified Riccati equation
is proposed and compared to the classical one. A method is
established to distinguish the faster algorithm. If the system is
stable, then both algorithms do converge to the steady-state
solution. If the system is unstable, then there exists a critical
value of the measurement detection probability, below which
both algorithms diverge. In Section 4, it is established that
this critical value increases in a logarithmic way as the system
becomes more unstable.

2. The Modified Riccati Equation

Consider the following state space equations at time k ≥ 0:

xk+1 = Fxk + wk,

zk = Hxk + υk,
(1)

where xk is the n × 1 state vector at time k, zk is the m × 1
measurement vector, F is the n× n system transition matrix,
and H is the m × n output matrix. It is assumed that
{wk} and {υk} are zero mean, independent, white, Gaussian
noise processes with constant covariance matrices given by
E[wkw

T
k ] = Q and E[υkυTk ] = R, that is, Q is the n× n plant

noise covariance matrix R is the m × m measurement noise
covariance matrix.

At the initial time k = 0, the state x0 is independent of
the processes {wk} and {υk} for any k and x0 is a Gaussian

random variable with mean
−
x0 and covariance P0, that is,

E[x0] = −
x0, E

[(
x0 − −

x0

)(
x0 − −

x0

)T]
= P0. (2)

For k ≥ 0, denoting Zk = {z0, z1, . . . , zk}, the state prediction
xk/k−1 = E[xk/Zk−1] and the prediction error covariance
matrix Pk/k−1 = E[(xk − xk/k−1)(xk − xk/k−1)T/Zk−1], and
using the discrete-time invariant Kalman filter equations
as described in [11–13], we derive the following recursion
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Table 1: Calculation burden of matrix operations.

Matrix operation Calculation burden

A(n× n) + B(n× n) = S symmetric (1/2)(n2 + n)

c · S(n× n) symmetric (1/2)(n2 + n)

A(n×m) · B(m× k) = C(n× k) 2nmk − nk

A(n×m) · B(m× n) = S symmetric n2m + nm− (1/2)(n2 + n)

[A(n× n)]−1 = B(n× n) (1/6)(16n3 − 3n2 − n)

for the symmetric n × n prediction error covariance matrix
Pk+1/k, the Riccati equation:

Pk+1/k = Q + FPk/k−1F
T

− FPk/k−1H
T
[
HPk/k−1H

T + R
]−1

HPk/k−1F
T

(3)

with initial condition P0/−1 = P0.
The state space equations in (1) can be used in target

tracking to describe a linear target motion and measurement
model. In addition, consider that a measurement is received
with detection probability pd [2], where

0 ≤ pd ≤ 1. (4)

Using the Kalman filter equations we are able to derive
[2, 3] a Kalman-like recursion for the symmetric n × n
prediction error covariance matrix Pk+1/k, the modified Ric-
cati equation:

Pk+1/k = Q + FPk/k−1F
T

− pd FPk/k−1H
T
[
HPk/k−1H

T + R
]−1

HPk/k−1F
T.

(5)

Note that the prediction error covariance matrix is nonnega-
tive definite (Pk+1/k ≥ 0).

Also in the modified Riccati equation (5) note that the
m × m matrix HPk/k−1HT + R is nonsingular, when R is a
positive definite matrix (R > 0), which has the significance
that no measurement is exact; this is reasonable in physical
problems.

It is remarkable that the following special cases are im-
plied by (5).

(i) Setting pd = 1, the classical Riccati equation (3) is
derived. The difference between the modified Riccati
equation and the Riccati equation is the term of de-
tection probability pd. It is obvious that the modified
Riccati equation (5) cannot be transformed into the
classical Riccati equation (3).

(ii) Setting pd = 0 in (5), the classical Lyapunov equation
is derived:

Pk+1/k = Q + FPk/k−1F
T (6)

which arises from the Riccati equation (3) in the
infinite measurement noise case (R → ∞).

3. Iterative Solutions of
the Modified Riccati Equation

Concerning the modified Riccati equation, it is known [9]
that for stable systems, which means that all eigenvalues of
F lie inside the unit circle, the modified Riccati equation
always converges and the limiting value P of the prediction
error covariance is the steady state solution of the discrete
time modified Riccati equation.

The classical implementation of the modified Riccati
Equation (cmRE) arises from (5), which consists of the direct
implementation of the recursion of the following equation:

Pk+1/k = F
{
Pk/k−1 − pd FPk/k−1H

T

×
[
HPk/k−1H

T + R
]−1

HPk/k−1

}
FT + Q.

(7)

It is obvious that this equation is equivalent to the modified
Riccati equation (5) achieving a reduction in computational
burden by using as a common factor F.

Notice that if R > 0, then the nonsingularity of
HPk/k−1HT + R in (7) is guaranteed.

It is known [2] that the steady state solution of the
modified Riccati equation is independent of the initial
condition P0/−1 = P0. So, for convenience, we are able to
use zero initial condition P0 = 0. Then we are able to use
P1/0 = Q as initial condition for the classical implementation.

Note that the convergence is achieved, when ‖Pk+1/k −
Pk/k−1‖ < ε, where ε is a small positive number and ‖M‖
denotes the norm of the matrix M, which is equal to the
largest singular value of M. Then the steady state solution
P satisfies the steady state modified Riccati equation:

P = Q + FPFT − pd FPHT
[
HPHT + R

]−1
HPFT. (8)

The proposed implementation of modified Riccati Equation
(pmRE) consists of the direct implementation of the recur-
sion of the following equation:

Pk+1/k =
(
1− pd

)(
Q + FPk/k−1F

T
)

+ pd

(
Q + F

[
P−1
k/k−1 + HTR−1H

]−1
)
FT.

(9)

This equation is equivalent to the modified Riccati equation
(5) and can be derived from (5) using the matrix inversion
lemma, under the condition that for k ≥ 1 the prediction
error covariance matrix Pk/k−1 is positive definite (Pk/k−1 >
0). This is guaranteed, if Q > 0, due to the fact that P1/0 = Q,
if we use zero initial condition P0/−1 = P0 = 0.

Notice that if R > 0, then the existence of HTR−1H in
(9) is guaranteed and the nonsingularity of P−1

k/k−1 +HTR−1H
becomes obvious. Also note that HTR−1H in (9) is computed
once (initialization process).

Both the classical and the proposed algorithms for
solving the modified Riccati equation are recursive ones.
Thus, the total computational time required for the imple-
mentation of each algorithm is

ta = BaSato, (10)
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Table 2: Classical implementation of the modified Riccati equation (cmRE).

Matrix operation Matrix dimensions Calculation burden

H · Pk/k−1 (m× n) · (n× n) 2n2m− nm

HPk/k−1 ·HT (m× n) · (n×m)∗ nm2 + nm− (1/2)(m2 + m)

Ok ≡ HPk/k−1HT + R (m×m) + (m×m)∗ (1/2)(m2 + m)

O−1
k (m×m) (1/6)(16m3 − 3m2 −m)

Kk ≡ O−1
k ·HPk/k−1 (m×m) · (m× n) 2nm2 − nm

W ≡ Pk/k−1HT · Kk (n×m) · (m× n)∗ n2m + nm− (1/2)(n2 + n)

pd ·W (n× n)∗ (1/2)(n2 + n)

Π1 ≡ Pk/k−1 − pd ·W (n× n) + (n× n)∗ (1/2)(n2 + n)

F ·Π1 (n× n) · (n× n) 2n3 − n2

Π2 ≡ FΠ1 · FT (n× n) · (n× n)∗ n3 + (1/2)(n2 − n)

Pk+1/k = Q + Π2 (n× n) + (n× n)∗ (1/2)(n2 + n)

BcmRE = (1/2)(6n3 + n2 + n) + 3n2m + 3nm2 + (1/6)(16m3 − 3m2 −m)
∗

Symmetric matrix.

Table 3: Proposed implementation of the modified Riccati equation (pmRE).

Matrix operation Matrix dimensions Calculation burden

P−1
k/k−1 (n× n) (1/6)(16n3 − 3n2 − n)

M ≡ P−1
k/k−1 + HTR−1H (n× n) + (n× n)∗ (1/2)(n2 + n)

M−1 (n× n) (1/6)(16n3 − 3n2 − n)

F ·M−1 (n× n) · (n× n) 2n3 − n2

FM−1 · FT (n× n) · (n× n)∗ n3 + (1/2)(n2 − n)

Ω ≡ Q + FM−1FT (n× n) + (n× n)∗ (1/2)(n2 + n)

pd ·Ω (n× n)∗ (1/2)(n2 + n)

F · Pk/k−1 (n× n) · (n× n) 2n3 − n2

FPk/k−1 · FT (n× n) · (n× n)∗ n3 + (1/2)(n2 − n)

Ψ ≡ Q + FPk/k−1FT (n× n) + (n× n)∗ (1/2)(n2 + n)

(1− pd) ·Ψ (n× n)∗ (1/2)(n2 + n)

Pk+1/k = (1− pd)Ψ + pdΩ (n× n) + (n× n)∗ (1/2)(n2 + n)

BpmRE = (1/3)(34n3 + 3n2 + 5n)
∗

Symmetric matrix.

where Ba is the per recursion calculation burden required for
the online calculations of each algorithm, Sa is the number of
recursions (steps) that each algorithm executes, and to is the
time required to perform a scalar operation.

Note that the two algorithms are equivalent to each other
with respect to their behaviour: they calculate theoretically
such steady-state prediction error variance P that satisfies
(8). Then, it is reasonable to assume that both algorithms
compute the limiting solution of the modified Riccati equa-
tion executing the same number of recursions, depending
on the desired accuracy. Thus, in order to compare the
algorithms with respect to their computational time, we have
to compare their per recursion calculation burden required
for the online calculations; the calculation burden of the
offline calculations (initialization process) is not taken into
account.

The computational analysis is based on the calculation
burden of the matrix operations, which are summarized in
Table 1 and needed for the implementation of the filtering
algorithm [14].

Then, the (per recursion) computational requirements
of the classical and the proposed algorithms for solving the
modified Riccati equation are computed as

BcmRE =1
2

(
6n3 + n2 + n

)

+ 3n2m + 3nm2 +
1
6

(
16m3 − 3m2 −m

)
,

BpmRE =1
3

(
34n3 + 3n2 + 5n

)
.

(11)

The details of (11) are given in Tables 2 and 3.
From the above computational requirements where we

derive the following conclusions.

(1) The per recursion calculation burden of the classical
algorithm depends on the state dimension n and on
the measurement dimension m, while the per recur-
sion calculation burden of the proposed algorithm
depends only on the state dimension n.
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Figure 1: Proposed algorithm may be faster than the classical one.
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Figure 2: Modified Riccati equation convergence with respect to
system stability.

(2) The proposed algorithm is faster than the classical
one if the following relation holds:

BcmRE − BpmRE =3n2m + 3nm2 +
1
6

(
16m3 − 3m2 −m

)

− 1
6

(
50n3 + 3n2 + 7n

)
> 0.

(12)

Figure 1 depicts the relation between the dimensions n and
m that may hold in order to decide which algorithm is faster.
Then, relation (12) is approached by the relation:

m > n. (13)

Thus it becomes obvious that we are able to establish the
following method to distinguish the faster algorithm:

“if m > n, then the proposed algorithm is faster than
the classical algorithm, else the classical algorithm is
faster than the proposed algorithm”.

4. Convergence of the Modified Riccati Equation

Concerning the modified Riccati equation, it is known [9]
that, for unstable systems (there is at least one eigenvalue of F
that lies strictly outside the unit circle), there exists a critical
value of detection probability pd, below which the modified
Riccati equation diverges.

Simulation results were taken concerning the modified
Riccati equation. Both the classical and the proposed algo-
rithms were implemented in order to solve the modified
Riccati equation. Various stable as well as unstable models
were considered. The following results were confirmed.

(i) Both algorithms have the same behavior. If the system
is stable (all eigenvalues of F lie inside the unit circle),
then the modified Riccati equation always converges:
there always exists a steady-state solution. If the
system is unstable (there is at least one eigenvalue
of F that lies strictly outside the unit circle), then
there exists a critical value of detection probability pd,
below which the modified Riccati equation diverges.

(ii) The critical value of detection probability pd in-
creases in a logarithmic way as the maximum absolute
eigenvalue of F increases, that is, the system becomes
more unstable. Figure 2 depicts the relation between
the system stability and the modified Riccati equation
convergence.

(iii) In the special case where the maximum absolute
eigenvalue of F lies in the unit circle, the critical value
of detection probability takes its minimum value of
the order of 0.04.

(iv) The maximum absolute eigenvalue of F, below which
the modified Riccati equation always diverges, is of
the order of 10.
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